【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b< 的解集;
(3)過點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的周長是26cm,對角線AC與BD交于點(diǎn)O,AC⊥AB,E是BC中點(diǎn),△AOD的周長比△AOB的周長多3cm,則AE的長度為( )
A.3cm
B.4cm
C.5cm
D.8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)判斷OE與OF的大小關(guān)系?并說明理由;
(2)若CE=8,CF=6,求OC的長
(3)連結(jié)AE,AF,當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并說出你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國數(shù)學(xué)史上最先完成勾股定理證明的數(shù)學(xué)家是公元3世紀(jì)三國時(shí)期的趙爽,他為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”(如圖1).圖2由“弦圖”變化得到,它是由八個(gè)全等的直角三角形拼接而成.將圖中正方形MNKT,正方形EFGH,正方形ABCD的面積分別記為S1,S2,S3,若S1+S2+S3=18,則正方形EFGH的面積為( )
A. B. 5C. 6D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,有A型、B型正方形卡片和C型長方形卡片各若干張.
(1)用1張A型卡片,1張B型卡片,2張C型卡片拼成一個(gè)正方形,如圖2,用兩種方法計(jì)算這個(gè)正方形面積,可以得到一個(gè)等式,請你寫出這個(gè)等式____;
(2)選取1張A型卡片,10張C型卡片,____張B型卡片,可以拼成一個(gè)正方形,這個(gè)正方形的邊長用含a,b的代數(shù)式表示為____;
(3)如圖3,兩個(gè)正方形邊長分別為m、n,m+n=10,mn=19,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E是AD的中點(diǎn),AB=8 ,F(xiàn)是線段CE上的動(dòng)點(diǎn),則BF的最小值是( )
A.10
B.12
C.16
D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點(diǎn) D 在 AB 上,DE⊥AB交 BC 于 E,點(diǎn) F 是 AE 的中點(diǎn)
(1) 寫出線段 FD 與線段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3) 將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com