【題目】如圖,以△ABC的三邊為邊在BC同側(cè)分別作等邊三角形,即△ABD,△BCE,△ACF.
(1)四邊形ADEF為__________四邊形;
(2)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為矩形;
(3)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為菱形;
(4)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF不存在.
【答案】(1)平行;(2)∠BAC=150°;(3)AB=AC且∠BAC≠60°;(4)∠BAC=60°.
【解析】
(1)可先證明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根據(jù)兩組對(duì)邊分別相等的四邊形是平行四邊形,可證四邊形ADEF是平行四邊形;
(2)如四邊形ADEF是矩形,則∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°時(shí),四邊形ADEF是矩形;
(3)利用菱形的性質(zhì)與判定得出即可;
(4)根據(jù)∠BAC=60°時(shí),∠DAF=180°,此時(shí)D、A、F三點(diǎn)在同一條直線上,以A,D,E,F為頂點(diǎn)的四邊形就不存在.
(1)證明:∵△ABD,△BCE都是等邊三角形,
∴∠DBE=∠ABC=60°-∠ABE,AB=BD,BC=BE.
在△ABC和△DBE中
,
∴△ABC≌△DBE(SAS).
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四邊形ADEF是平行四邊形.
(2)∵四邊形ADEF是平行四邊形,
∴當(dāng)∠DAF=90°時(shí),四邊形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°-∠DAF-∠DAB-∠FAC=360°-90°-60°-60°=150°.
則當(dāng)∠BAC=150°時(shí),四邊形ADEF是矩形;
故答案為:∠BAC=150°;
(3)當(dāng)AB=AC且∠BAC≠60°時(shí),四邊形ADEF是菱形,
理由是:由(1)知:AD=AB=EF,AC=DE=AF,
∵AC=AB,
∴AD=AF,
∵四邊形ADEF是平行四邊形,AD=AF,
∴平行四邊形ADEF是菱形.
故答案為:AB=AC且∠BAC≠60°(或AB=AC≠BC);
(4)當(dāng)∠BAC=60°時(shí),∠DAF=180°,
此時(shí)D、A、F三點(diǎn)在同一條直線上,以A,D,E,F為頂點(diǎn)的四邊形就不存在;
故答案為:∠BAC=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC<20°,三邊長(zhǎng)分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長(zhǎng)為a+c+5b,則翻折11次后,所得圖形的周長(zhǎng)為_____________.(結(jié)果用含有a,b,c的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,BC=8,P、Q分別是AB、BC邊上的點(diǎn),且AP=BQ=a (其中0<a<8).
(1)若PQ⊥BC,求a的值;
(2)若PQ=BQ,把線段CQ繞著點(diǎn)Q旋轉(zhuǎn)180°,試判別點(diǎn)C的對(duì)應(yīng)點(diǎn)C’是否落在線段QB上?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上一點(diǎn),以OA為半徑的⊙O與BC相切于點(diǎn)D,與AC相交于點(diǎn)E,與AB相交于點(diǎn)F,連接AD.
(1)求證:AD平分∠BAC;
(2)若點(diǎn)E為弧AD的中點(diǎn),探究線段BD,CD之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)E為弧AD的中點(diǎn),CD=,求弧DF與線段BD,BF所圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商欲將A市的一批水果運(yùn)往B市銷售,有火車和汽車兩種運(yùn)輸工具,運(yùn)輸過程中的損耗均為160元/時(shí)。有關(guān)數(shù)據(jù)如下:
運(yùn)輸工具 | 平均速度(千米/時(shí)) | 運(yùn)費(fèi)(元/千米) | 裝卸費(fèi)(元) |
火車 | 100 | 18 | 1800 |
汽車 | 80 | 22 | 1000 |
(1)如果汽車的總支出費(fèi)用比火車費(fèi)用多960元,求出A市與B市之間的路程是多少千米?請(qǐng)列方程解答。
(2)如果A市與C市之間的距離為300千米,要想將這批水果運(yùn)往C市銷售。選擇哪種運(yùn)輸工具比較合算呢?請(qǐng)通過計(jì)算說明你的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探索新知)
如圖1,點(diǎn)C在線段AB上,圖中共有3條線段:AB、AC和BC,若其中有一條線段的長(zhǎng)度是另一條線段長(zhǎng)度的兩倍,則稱點(diǎn)C是線段AB的“二倍點(diǎn)”.
(1)一條線段的中點(diǎn) 這條線段的“二倍點(diǎn)”;(填“是”或“不是”)
(深入研究)
如圖2,若線段AB=20cm,點(diǎn)M從點(diǎn)B的位置開始,以每秒2cm的速度向點(diǎn)A運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒.
(2)問t為何值時(shí),點(diǎn)M是線段AB的“二倍點(diǎn)”;
(3)同時(shí)點(diǎn)N從點(diǎn)A的位置開始,以每秒1cm的速度向點(diǎn)B運(yùn)動(dòng),并與點(diǎn)M同時(shí)停止.請(qǐng)直接寫出點(diǎn)M是線段AN的“二倍點(diǎn)”時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,△ACE為AC為底的等腰直角三角形,連接BE交AD、AC分別于F. N,CM平分∠ACB交BN于M,下列結(jié)論:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正確的結(jié)論有( )
A. 1個(gè)B. 2個(gè)
C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)P是邊AD上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)D重合),點(diǎn)Q是邊CD上一點(diǎn),聯(lián)結(jié)PB、PQ,且∠PBC=∠BPQ.
(1)當(dāng)QD=QC時(shí),求∠ABP的正切值;
(2)設(shè)AP=x,CQ=y,求y關(guān)于x的函數(shù)解析式;
(3)聯(lián)結(jié)BQ,在△PBQ中是否存在度數(shù)不變的角?若存在,指出這個(gè)角,并求出它的度數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有三個(gè)角相等的四邊形叫做三等角四邊形.
(1)在三等角四邊形中,,則的取值范圍為________.
(2)如圖①,折疊平行四邊形,使得頂點(diǎn)、分別落在邊、上的點(diǎn)、處,折痕為、.求證:四邊形為三等角四邊形;
(3)如圖②,三等角四邊形中,,若,,,則 的長(zhǎng)度為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com