【題目】觀察下列等式,探究其中的規(guī)律:①+﹣1=,②+﹣=,③+﹣=,④+﹣=,….
(1)按以上規(guī)律寫出第⑧個等式:_______;
(2)猜想并寫出第n個等式:_________;
(3)請證明猜想的正確性.
【答案】(1)+=;(2)+=;(3)證明見解析.
【解析】
(1)仔細(xì)觀察四個等式,可以發(fā)現(xiàn)第一個數(shù)的分母為連續(xù)的奇數(shù),第二個數(shù)的分母為連續(xù)的偶數(shù),第三個分母為連續(xù)的自然數(shù),據(jù)此進(jìn)一步整理即可得出答案;
(2)根據(jù)(1)中的規(guī)律直接進(jìn)行歸納總結(jié)即可;
(3)利用分式的運算法則進(jìn)行計算驗證即可.
(1)觀察四個等式,可以發(fā)現(xiàn)第一個數(shù)的分母為連續(xù)的奇數(shù),第二個數(shù)的分母為連續(xù)的偶數(shù),第三個分母為連續(xù)的自然數(shù),
∴第⑧個等式為:+=,
故答案為:+=;
(2)根據(jù)(1)中規(guī)律總結(jié)歸納可得:+=,
故答案為:+=;
(3)證明:
對等式左邊進(jìn)行運算可得:+==,
∵等式右邊=,
∴左邊=右邊,
∴+=成立.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)學(xué)生的安全意識,我市某中學(xué)組織初三年級1000名學(xué)生參加了“校園安全知識競賽”,隨機(jī)抽取了一個班學(xué)生的成績進(jìn)行整理,分為,,,四個等級,并把結(jié)果整理繪制成條形統(tǒng)計圖與扇形統(tǒng)計圖(部分),請依據(jù)如圖提供的信息,完成下列問題:
(1)請估計本校初三年級等級為的學(xué)生人數(shù);
(2)學(xué)校決定從得滿分的3名女生和2名男生中隨機(jī)抽取3人參加市級比賽,請求出恰好抽到2名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳調(diào)査了七年級400名學(xué)生到校的方式,根據(jù)調(diào)查結(jié)果繪制出統(tǒng)計圖的一部分如圖:
(1)補(bǔ)全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中表示“步行”的扇形圓心角的度數(shù);
(3)估計在3000名學(xué)生中乘公交的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,熱氣球的探測器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,過點C作BC的垂線交⊙O于D,點E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當(dāng)AB=8,CE=2時,求⊙O直徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l為y=x,過點A1(1,0)作A1B1⊥x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2;再作A2B2⊥x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫圓弧交x軸于點A3;……,按此作法進(jìn)行下去,則點An的坐標(biāo)為(_______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連接DE、OE.
(1)判斷DE與⊙O的位置關(guān)系并說明理由;
(2)求證:
(3)若tanC=,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+8交x軸于點A,交y軸于點B,點C在AB上,AC=5,CD∥OA,CD交y軸于點D.
(1)求點D的坐標(biāo);
(2)點P從點O出發(fā),以每秒1個單位長度的速度沿OA勻速運動,同時點Q從點A出發(fā),以每秒個單位長度的速度沿AB勻速運動,設(shè)點P運動的時間為t秒(0<t<3),△PCQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,過點Q作RQ⊥AB交y軸于點R,連接AD,點E為AD中點,連接OE,求t為何值時,直線PR與x軸相交所成的銳角與∠OED互余.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個拋物線經(jīng)過A(0,1),B(1,3),C(﹣1,1)三點.
(1)求這個拋物線的表達(dá)式及其頂點D的坐標(biāo);
(2)聯(lián)結(jié)AB、BC、CA,求tan∠ABC的值;
(3)如果點E在該拋物線的對稱軸上,且以點A、B、C、E為頂點的四邊形是梯形,直接寫出點E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com