【題目】兩個大小不同的等腰直角三角板按圖①所示的位置放置,圖②是由它抽象畫出的幾何圖形,,,,在同一條直線上,連接.

(1)請找出圖②中與全等的三角形,并給予證明(說明:結(jié)論中不得含有未標識的字母);

(2)求證:.

【答案】(1)與△ABE全等的三角形是△ACD,證明見解析;

(2)見解析.

【解析】

(1)此題根據(jù)△ABC與△AED均為等腰直角三角形,容易得到全等條件證明△ABE≌△ACD;

(2)根據(jù)(1)的結(jié)論和已知條件可以證明DC⊥BE.

解答:(1)證明:∵△ABC與△AED均為等腰直角三角形,

∴AB=AC,AE=AD,∠BAC=∠EAD=90°.

∴∠BAC+∠CAE=∠EAD+∠CAE.

即∠BAE=∠CAD,

在△ABE與△ACD中,

,

∴△ABE≌△ACD.

(2)∵△ABE≌△ACD,

∴∠ACD=∠ABE=45°.

又∵∠ACB=45°,

∴∠BCD=∠ACB+∠ACD=90°.

∴DC⊥BE.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,且,且,請按照圖中所標注的數(shù)據(jù)計算圖中實線所圍成的圖形的面積______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,M經(jīng)過原點O(0,0),點A,0)與點B(0,﹣1),點D在劣弧OA上,連接BDx軸于點C,且∠COD=∠CBO

(1)請直接寫出M的直徑,并求證BD平分∠ABO

(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與M相切,求此時點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸相交于、兩點,與軸相交于點,點、是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點、

點坐標;

求二次函數(shù)的解析式;

根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,在中,,,,點從點開始沿邊向點的速度移動,點從點開始沿邊向點的速度移動.

如果,分別從,同時出發(fā),那么幾秒后,的面積等于?

如果分別從,同時出發(fā),那么幾秒后,的長度等于?

中,的面積能否等于?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,C = 90°,.DBC上一點,且到A,B兩點的距離相等.

(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);

(2)連結(jié)AD,若∠B = 35°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,點、 分別在正方形 的邊上,,,,連結(jié),把 繞點逆時針旋轉(zhuǎn),使重合.的面積.

2)如圖,四邊形中,,,點、分別在、邊上,且,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=10°,點POB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……

請按照上面的要求繼續(xù)操作并探究:

P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn若之后就不能再畫出符合要求點Pn+1了,則n=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,DC5 cm,在DC上存在一點E,沿直線AEAED折疊,使點D恰好落在BC邊上,設落點為F,若ABF的面積為30 cm2,求ADE的面積.

查看答案和解析>>

同步練習冊答案