【題目】已知關(guān)于的函數(shù)(為常數(shù))
(1)若函數(shù)的圖象與軸恰有一個(gè)交點(diǎn),求的值;
(2)若函數(shù)的圖象是拋物線,且頂點(diǎn)始終在軸上方,求的取值范圍.
【答案】(1)當(dāng)a=0或a=時(shí)函數(shù)圖象與軸恰有一個(gè)交點(diǎn);(2)當(dāng)a>或a<0時(shí),拋物線頂點(diǎn)始終在軸上方.
【解析】試題分析:(1)需考慮a為0和不為0的情況,當(dāng)a=0時(shí)圖象為一直線;當(dāng)a≠0時(shí)圖象是一拋物線,由判別式△=b2-4ac判斷;
(2)根據(jù)拋物線頂點(diǎn)的縱坐標(biāo)公式得到縱坐標(biāo),根據(jù)題意列出不等式組則可解.
試題解析:(1)當(dāng)a=0時(shí),函數(shù)為y=x+1,它的圖象顯然與軸只有一個(gè)交點(diǎn)(-1,0),
當(dāng)a≠0時(shí),依題意得方程ax2+x+1=0有兩等實(shí)數(shù)根,∴△=1-4a,∴a= ,
∴當(dāng)a=0或a=時(shí)函數(shù)圖象與軸恰有一個(gè)交點(diǎn);
(2)根據(jù)題意得 ,則 或,解得a>或a<0.
∴當(dāng)a>或a<0時(shí),拋物線頂點(diǎn)始終在軸上方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.
①當(dāng)α為多少度時(shí),AB∥DC?
②當(dāng)旋轉(zhuǎn)到圖③所示位置時(shí),α為多少度?
③連接BD,當(dāng)0°<α≤45°時(shí),探求∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC, ∠C=90°,CD 是AB邊上的高, AC=4cm,BC=3cm,以點(diǎn)C為圓心作⊙C,使A、B、D三點(diǎn)至少有一個(gè)在圓內(nèi),且至少有一個(gè)在圓外,則⊙C半徑r范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底米,下底米,上下底相距米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為米.
用含的式子表示橫向甬道的面積;
當(dāng)三條甬道的面積是梯形面積的八分之一時(shí),求甬道的寬;
根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過米.如果修建甬道的總費(fèi)用(萬元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是,花壇其余部分的綠化費(fèi)用為每平方米萬元,那么當(dāng)甬道的寬度為多少米時(shí),所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)對(duì)一種新售的手機(jī)進(jìn)行市場(chǎng)問卷調(diào)查,其中一個(gè)項(xiàng)目是讓每個(gè)人按A(不喜歡)、B(一般)、C(不比較喜歡)、D(非常喜歡)四個(gè)等級(jí)對(duì)該手機(jī)進(jìn)行評(píng)價(jià),圖①和圖②是該商場(chǎng)采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)本次調(diào)查的人數(shù)為多少人?A等級(jí)的人數(shù)是多少?請(qǐng)?jiān)趫D中補(bǔ)全條形統(tǒng)計(jì)圖.
(2)圖①中,a等于多少?D等級(jí)所占的圓心角為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探索發(fā)現(xiàn)
如圖1,在△ABC中,點(diǎn)D在邊BC上,△ABD與△ADC面積分別記為S1和S2,試判斷與的數(shù)量關(guān)系,并說明理由.
(2)閱讀分析
小東遇到這樣一個(gè)問題:如圖2,在Rt△ABC中,AB=AC,∠BAC=90°,射線AM交BC于點(diǎn)D,點(diǎn)E,F在AM上,且∠CEM=∠BFM=90°,試判斷BF,CE,EF三條線段之間的數(shù)量關(guān)系.
小東利用一對(duì)全等三角形,經(jīng)過推理使問題得以解決.
填空:①圖2中的一對(duì)全等三角形為_________;
②BF,CE,EF三條線段之間的數(shù)量關(guān)系為__________________.
(3)類比探究
如圖3,在四邊形ABCD中,AB=AD,AC與BD交于點(diǎn)O,點(diǎn)E、F在射線AC上,且∠BCF=∠DEF=∠BAD.
①判斷BC,DE,CE三條線段之間的數(shù)量關(guān)系,并說明理由;
②若OD=3OB,△AED的面積為2,直接寫出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多好佳水果店在批發(fā)市場(chǎng)購(gòu)買某種水果銷售,第一次用1500元購(gòu)進(jìn)若干千克,并以每千克9元出售,很快售完.由于水果暢銷,第二次購(gòu)買時(shí),每千克的進(jìn)價(jià)比第一次提高了10%,用1694元所購(gòu)買的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價(jià)45%售完剩余的水果.
(1)第一次水果的進(jìn)價(jià)是每千克多少元?
(2)該水果店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系XOY中,一次函數(shù)的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點(diǎn).直線l2過點(diǎn)C(a,0)且與直線l1垂直,其中a>0.點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)P沿射線AB運(yùn)動(dòng),速度為每秒4個(gè)單位;點(diǎn)Q沿射線AO運(yùn)動(dòng),速度為每秒5個(gè)單位.
(1)寫出A點(diǎn)的坐標(biāo)和AB的長(zhǎng);
(2)當(dāng)點(diǎn)P、Q運(yùn)動(dòng)了多少秒時(shí),以點(diǎn)Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時(shí)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形AOBC中.OB=3個(gè)單位,BC=4個(gè)單位,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿射線AO以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿射線BC以每秒2個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用t表示線段PO的長(zhǎng)度;
(2)當(dāng)t為何值時(shí),四邊形APQC是矩形;
(3)設(shè)△APO與△AOB的重疊部分的面積為s平方單位,求s關(guān)于t的函數(shù)關(guān)系式;
(4)過點(diǎn)P作PE⊥AO交直線AB于點(diǎn)E,在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過程中,點(diǎn)H是平面內(nèi)一點(diǎn),當(dāng)以B、Q、E、H為頂點(diǎn)的四邊形是菱形時(shí),請(qǐng)直接寫出運(yùn)動(dòng)時(shí)間t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com