【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點A順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.
①當(dāng)α為多少度時,AB∥DC?
②當(dāng)旋轉(zhuǎn)到圖③所示位置時,α為多少度?
③連接BD,當(dāng)0°<α≤45°時,探求∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.
【答案】(1)當(dāng)α=15°時,AB∥DC;(2)α=45°;(3)詳見解析.
【解析】
(1)若AB∥DC,則∠BAC=∠C=30°,得到α=∠BAC′-∠BAC=45°-30°=15°;
(2)當(dāng)旋轉(zhuǎn)到圖③所示位置時,α=45°,
(3)連接CC′,BD,BO,在△BDO和△OCC′中,利用三角形內(nèi)角和定理得到∠BDO+∠DBO=∠OCC′+∠OC′C,即可求得∠DBC′+∠CAC′+∠BDC=105°,即得到∠DBC′+∠CAC′+∠BDC值的大小不變.
解:(1)當(dāng)α=15°時,AB∥DC.
(2)當(dāng)旋轉(zhuǎn)到圖③所示位置時,α=45°.
(3)當(dāng)0°<α≤45°時,∠DBC′+∠CAC′+∠BDC值的大小不變.
證明:連接CC′,在△BDO和△OCC′中,對頂角∠BOD=∠COC′,
∴∠1+∠2=∠3+∠4,.
∴∠DBC′+∠CAC′+∠BDC
=∠2+∠α+∠1
=180°―∠ACD―∠AC′B
=180°―45°―30°
=105°
∴當(dāng)0°<α≤45°時,∠DBC′+∠CAC′+∠BDC值的大小不變
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)超市一段時間每天訂購面包進(jìn)行銷售,每售出1個面包獲利潤0.5元,未售出的每個虧損0.3元.
(1)若該超市每天訂購面包80個,今后每天售出的面包個數(shù)用x(0<x≤80)表示,每天銷售面包的利潤用y(元)表示,請用含x的式子表示y;
(2)小明連續(xù)m天對該超市的面包銷量進(jìn)行統(tǒng)計,并制成了頻數(shù)分布直方圖(每組含最小值,不含最大值)和扇形統(tǒng)計圖,如圖所示.請根據(jù)兩圖提供的信息計算在m天內(nèi)日銷售利潤少于32元的天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,完成下列說理過程
如圖,已知點A,O,B在同一條直線上,OE平分∠BOC,∠DOE=90°
求證:OD是∠AOC的平分線;
證明:如圖,因為OE是∠BOC的平分線,
所以∠BOE=∠COE.( 。
因為∠DOE=90°
所以∠DOC+∠ =90°
且∠DOA+∠BOE=180°﹣∠DOE= °.
所以∠DOC+∠ 。健螪OA+∠BOE.
所以∠ =∠ .
所以OD是∠AOC的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】潛山市某村辦工廠,今年前5個月生產(chǎn)某種產(chǎn)品的總量C(件)關(guān)于時間t(月)的函數(shù)圖象如圖所示,則該廠對這種產(chǎn)品來說( )
A. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月每月生產(chǎn)總量逐月減少
B. 1月至3月每月生產(chǎn)總量逐月增加,4,5兩月每月生產(chǎn)量與3月持平
C. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月均停止生產(chǎn)
D. 1月至3月每月生產(chǎn)總量不變,4、5兩月均停止生產(chǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2 的正方形ABCD中,點E是CD邊的中點,延長BC至點F,使CF=CE,連接BE,DF.將△BEC繞點C按順時針方向旋轉(zhuǎn).當(dāng)點E恰好落在DF上的點H處時,連接AG、DG、BG,則AG的長是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為∠BAC的外角平分線上一點并且滿足BD=CD,∠DBC=∠DCB,過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,則下列結(jié)論:
①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.
其中正確的結(jié)論有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,∠5=∠CDA=∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空:
∵∠5=∠CDA(已知),∴________∥________(內(nèi)錯角相等,兩直線平行).
∵∠5=∠ABC(已知),∴________∥________(同位角相等,兩直線平行).
∵∠2=∠3(已知),∴________∥________(內(nèi)錯角相等,兩直線平行).
∵∠BAD+∠CDA=180°(已知),
∴________∥________(同旁內(nèi)角互補(bǔ),兩直線平行).
∵∠5=∠CDA(已知),
又∠5與∠BCD互補(bǔ),
∠CDA與________互補(bǔ),
∴∠BCD=∠6(等角的補(bǔ)角相等),
∴________∥________(同位角相等,兩直線平行).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列結(jié)論:①AC﹣BE=AE;②點E在線段BC的垂直平分線上;③∠DAE=∠C;④BC=4AD,其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com