【題目】已知k為實數(shù),關(guān)于x的方程為x2(k2)x2k1.

(1)判斷方程有無實數(shù)根.

(2)當方程的根和k都是有理數(shù)時,請直接寫出其中k1個值和相應(yīng)方程的根.

【答案】1)方程有兩個不等的實數(shù)根;(2k=2,方程的根為x1=-1x2=-3;或k=,方程的根為x1=0,x2=.(答案不唯一,寫出一個即可)

【解析】

1)先求出判別式,然后根據(jù)0的關(guān)系即可得出答案;

2)利用求根公式表示出方程的根,然后對k取一個有理數(shù)使得方程的根也為有理數(shù),或直接令x=0求出k的值,然后再把k的值代入求根公式求出另外的一個根即可.

解:(1)原方程可化為:x2(k2)x2k-1=0,

=(k+2)2-4(2k-1)=k2-4k+4+4=(k-2)2+40,

所以原方程有兩個不等的實數(shù)根;

2)∵△=(k-2)2+40,

∴由求根公式得x1=,x2=

由于方程的根和k都是有理數(shù),

可令k=2,得方程的根為x1==-1,x2==-3

或令x=0,得2k-1=0,即k=

k=代入求根公式得:x1=0,x2=.(答案不唯一)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組在探究函數(shù)的圖象和性質(zhì)時,經(jīng)歷了以下探究過程:

1)列表如下:

寫出表中m、n的值:m n ;

2)描點并在圖中畫出函數(shù)的大致圖象;

3)根據(jù)函數(shù)圖象,完成以下問題:

①觀察函數(shù)的圖象,以下說法正確的有   (填寫正確的序號)

A.對稱軸是直線x1;

B.函數(shù)的圖象有兩個最低點,其坐標分別是(﹣1,2)、(1,2);

C.當﹣1x1時,yx的增大而增大;

D.當函數(shù)的圖象向下平移3個單位時,圖象與x軸有三個公共點;

E.函數(shù)的圖象,可以看作是函數(shù)的圖象向右平移2個單位得到.

②結(jié)合圖象探究發(fā)現(xiàn),當m滿足   時,方程有四個解.

③設(shè)函數(shù)的圖象與其對稱軸相交于P點,當直線yn和函數(shù)圖象只有兩個交點時,且這兩個交點與點P所構(gòu)成的三角形是等腰直角三角形,則n的值為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿角平分線BD所在直線翻折,頂點A恰好落在邊BC的中點E處,AE=BD,那么tanABD=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC的三個頂點的坐標分別為,,

1)點A關(guān)于y軸對稱的點的坐標是

2)將△ABC繞坐標原點O順時針旋轉(zhuǎn)180°,畫出圖形,直接寫出點B的對應(yīng)點的坐標;

3)請直接寫出:以AB,C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A90°,BC2.BC的中點O為圓心的圓分別與AB,AC相切于D,E兩點,則弧DE的長為( ).

A.B.C.D.π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的特征線.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.

問題與探究:如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,AC分別在x軸和y軸上,拋物線經(jīng)過BC兩點,頂點D在正方形內(nèi)部.

(1)直接寫出點D(m,n)所有的特征線;

(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;

(3)點PAB邊上除點A外的任意一點,連接OP,將OAP沿著OP折疊,點A落在點A的位置,當點A在平行于坐標軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為銳角三角形,ADBC邊上的高,正方形EFGH的一邊FGBC上,頂點EH分別在AB、AC上,已知BC40cm,AD30cm.

1)求證:AEH∽△ABC

2)求這個正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC5,BC8,點D是邊BC(不與B,C重合)一動點,∠ADE=∠B,DEAC于點E,若△DCE為直角三角形,則BD的值為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】射線QN與等邊ABC的兩邊AB,BC分別交于點M,N,且ACQNAM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與ABC的邊相切(切點在邊上),請寫出t可取的一切值 (單位:秒)

查看答案和解析>>

同步練習冊答案