【題目】2019年11月,胡潤研究院攜手知識產(chǎn)權(quán)與科創(chuàng)云平臺匯桔,聯(lián)合發(fā)布《IP助燃AI新紀(jì)元﹣2019中國人工智能產(chǎn)業(yè)知識產(chǎn)權(quán)發(fā)展白皮書》,白皮書公布了2019中國人工智能企業(yè)知識產(chǎn)權(quán)競爭力百強(qiáng)榜,對500余家中國人工智能主流企業(yè)進(jìn)行定量評估(滿分100分),前三名分別為:華為、騰訊、百度.對得分由高到低的前41家企業(yè)的有關(guān)數(shù)據(jù)進(jìn)行收集、整理、描述和分析.下面給出了部分信息:
a.得分的頻數(shù)分布直方圖:
(數(shù)據(jù)分成8組:60≤x<65,65≤x<70,70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x≤100,)
b.知識產(chǎn)權(quán)競爭力得分在70≤x<75這一組的是:70.3,71.6,72.1,72.5,74.1.
c.41家企業(yè)注冊所在城市分布圖(不完整)如圖:(結(jié)果保留一位小數(shù))
d.漢王科技股份有限公司的知識產(chǎn)權(quán)競爭力得分是70.3.
(以上數(shù)據(jù)來源于《IP助燃AI新紀(jì)元﹣2019中國人工智能產(chǎn)業(yè)知識產(chǎn)權(quán)發(fā)展白皮書》)
根據(jù)以上信息,回答下列問題:
(1)漢王科技股份有限公司的知識產(chǎn)權(quán)競爭力得分排名是第 ;
(2)百度在人工智能領(lǐng)域取得諸多成果,尤其在智能家居、自動駕駛與服務(wù)于企業(yè)的智能云領(lǐng)域,百度都已進(jìn)行前瞻布局,請你估計(jì)百度在本次排行榜中的得分大概是 ;
(3)在41家企業(yè)注冊所在城市分布圖中,m= ,請用陰影標(biāo)出代表上海的區(qū)域;
(4)下列推斷合理的是 .(只填序號)
①前41家企業(yè)的知識產(chǎn)權(quán)競爭力得分的中位數(shù)應(yīng)在65≤x<70這一組中,眾數(shù)在65≤x<70這一組的可能性最大;
②前41家企業(yè)分布于我國8個城市.人工智能產(chǎn)業(yè)的發(fā)展聚集于經(jīng)濟(jì)、科技、教育相對發(fā)達(dá)的城市,一線城市中,北京的優(yōu)勢尤其突出,貢獻(xiàn)榜單過半的企業(yè),充分體現(xiàn)北京在人工智能領(lǐng)域的產(chǎn)業(yè)集群優(yōu)勢.
【答案】(1)16;(2)94;(3)5;(4)①②.
【解析】
(1)根據(jù)條形統(tǒng)計(jì)圖中的信息即可得到結(jié)論;
(2)根據(jù)條形統(tǒng)計(jì)圖中的信息即可得到結(jié)論;
(3)根據(jù)扇形統(tǒng)計(jì)圖中的信息列式計(jì)算即可;
(4)根據(jù)統(tǒng)計(jì)圖中的信息判斷即可.
解:(1)漢王科技股份有限公司的知識產(chǎn)權(quán)競爭力得分排名是第16名;
(2)估計(jì)百度在本次排行榜中的得分大概是94分;
(3)∵41家企業(yè)注冊在在北京的有41×53.7%≈22家,
∴在41家企業(yè)注冊所在城市分布圖中,m=41﹣7﹣22﹣2﹣2﹣1﹣1﹣1=5;
如下圖中陰影部分標(biāo)代表上海的區(qū)域:
(4)推斷合理的是①②,
故答案為:(1)16;(2)94;(3)5;(4)①②.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的任意點(diǎn),如果滿足 (x≥0,a為常數(shù)),那么我們稱這樣的點(diǎn)叫做“特征點(diǎn)”.
(1)當(dāng)2≤a≤3時,
①在點(diǎn)中,滿足此條件的特征點(diǎn)為__________________;
②⊙W的圓心為,半徑為1,如果⊙W上始終存在滿足條件的特征點(diǎn),請畫出示意圖,并直接寫出m的取值范圍;
(2)已知函數(shù),請利用特征點(diǎn)求出該函數(shù)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.其中卷九中記載了一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”其意思是:如圖,AB為⊙O的直徑,弦CD⊥AB于點(diǎn)E,BE=1寸,CD=1尺,那么直徑AB的長為多少寸?(注:1尺=10寸)根據(jù)題意,該圓的直徑為_____寸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB=5cm,∠BAM=90°,P是與∠BAM所圍成的圖形的外部的一定點(diǎn),C是上一動點(diǎn),連接PC交弦AB于點(diǎn)D.設(shè)A,D兩點(diǎn)間的距離為xcm,P,D兩點(diǎn)間的距離為y1cm,P,C兩點(diǎn)間的距離為y2cm.小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小騰的探究過程,請補(bǔ)充完整:
按照表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值:
x/cm | 0.00 | 1.00 | 1.56 | 1.98 | 2.50 | 3.38 | 4.00 | 4.40 | 5.00 |
y1/cm | 2.75 | 3.24 | 3.61 | 3.92 | 4.32 | 5.06 | 5.60 | 5.95 | 6.50 |
y2/cm | 2.75 | 4.74 | 5.34 | 5.66 | 5.94 | 6.24 | 6.37 | 6.43 | 6.50 |
(1)在同一平面直角坐標(biāo)系xOy中,畫出各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(2)連接BP,結(jié)合函數(shù)圖象,解決問題:當(dāng)△BDP為等腰三角形時,x的值約為_____cm(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小聰參加了100m跑的5期集訓(xùn),每期集訓(xùn)結(jié)束時進(jìn)行測試,根據(jù)他們的集訓(xùn)時間、測試成績繪制成如圖兩個統(tǒng)計(jì)圖.
根據(jù)圖中信息,有下面四個推斷:
①這5期的集訓(xùn)共有56天;
②小明5次測試的平均成績是11.68秒;
③從集訓(xùn)時間看,集訓(xùn)時間不是越多越好,集訓(xùn)時間過長,可能造成勞累,導(dǎo)致成績下滑;
④從測試成績看,兩人的最好成績都是在第4期出現(xiàn),建議集訓(xùn)時間定為14天.
所有合理推斷的序號是( 。
A.①③B.②④C.②③D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)P為圖形M上任意一點(diǎn),點(diǎn)Q為圖形N上任意一點(diǎn),若點(diǎn)P與點(diǎn)Q之間的距離PQ始終滿足PQ>0,則稱圖形M與圖形N相離.
(1)已知點(diǎn)A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).
①與直線y=3x﹣5相離的點(diǎn)是 ;
②若直線y=3x+b與△ABC相離,求b的取值范圍;
(2)設(shè)直線y=x+3、直線y=﹣x+3及直線y=﹣2圍成的圖形為W,⊙T的半徑為1,圓心T的坐標(biāo)為(t,0),直接寫出⊙T與圖形W相離的t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦球賽,分為若干組,其中第一組有A,B,C,D,E五個隊(duì).這五個隊(duì)要進(jìn)行單循環(huán)賽,即每兩個隊(duì)之間要進(jìn)行一場比賽,每場比賽采用三局兩勝制,即三局中勝兩局就獲勝.每場比賽勝負(fù)雙方根據(jù)比分會獲得相應(yīng)的積分,積分均為正整數(shù).這五個隊(duì)完成所有比賽后得到如下的積分表.
根據(jù)上表回答下列問題:
(1)第一組一共進(jìn)行了 場比賽,A隊(duì)的獲勝場數(shù)x為 ;
(2)當(dāng)B隊(duì)的總積分y=6時,上表中m處應(yīng)填 ,n處應(yīng)填 ;
(3)寫出C隊(duì)總積分p的所有可能值為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過點(diǎn)A(3,1),點(diǎn)B(0,4).
(1)求該二次函數(shù)的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)點(diǎn)C(m,n)在該二次函數(shù)圖象上.
①當(dāng)m=﹣1時,求n的值;
②當(dāng)m≤x≤3時,n最大值為5,最小值為1,請根據(jù)圖象直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=2x﹣1的圖象交于A、B兩點(diǎn),已知A(m,﹣3).
(1)求k及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)C是y軸上一點(diǎn),且S△ABC=5,直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com