【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的相交情況,關(guān)于下列結(jié)論:
①方程ax2+bx=0的兩個(gè)根為x1=0,x2=﹣4;②b﹣4a=0;③9a+3b+c<0;其中正確的結(jié)論有( 。
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
【答案】D
【解析】
利用拋物線與x軸的交點(diǎn)問題可對(duì)①進(jìn)行判斷;利用拋物線的對(duì)稱軸方程可對(duì)②進(jìn)行判斷;利用x=3時(shí),y<0可對(duì)③進(jìn)行判斷.
解:∵拋物線過點(diǎn)(0,0),
∴c=0,
∴拋物線的解析式為y=ax2+bx,
∵拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣4,0),
∴方程ax2+bx=0的兩個(gè)根為x1=0,x2=﹣4,所以①正確;
∵拋物線的對(duì)稱軸為直線x=﹣=﹣2,
∴b=4a,所以②正確;
∵x=3時(shí),y<0,
∴9a+3b+c<0,所以③正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為4且以坐標(biāo)原點(diǎn)為圓心的圓O交x軸,y軸于點(diǎn)B、D、A、C,過圓上的動(dòng)點(diǎn)不與A重合作,且在AP右側(cè).
當(dāng)P與C重合時(shí),求出E點(diǎn)坐標(biāo);
連接PC,當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
連接OE,直接寫出線段OE的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)如今,“垃圾分類”意識(shí)已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.
(1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;
(2)求乙所拿的兩袋垃圾不同類的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一艘貨輪以36km/h的速度在海面上沿正北方向航行,當(dāng)行駛至A處時(shí),發(fā)現(xiàn)北偏東37°方向有一個(gè)燈塔B,貨輪繼續(xù)向北航行20分鐘后到達(dá)C處,發(fā)現(xiàn)燈塔B在它的北偏東67°方向,則此時(shí)貨輪與燈塔B的距離為_____km.(結(jié)果精確到0.1,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin67°≈0.920,cos67°≈0.391,tan67°≈2.356)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,連接BC.過點(diǎn)A作BC的平行線交拋物線于點(diǎn)D.
(1)求△ABC的面積;
(2)已知點(diǎn)M是拋物線的頂點(diǎn),在直線AD上有一動(dòng)點(diǎn)E,x軸上有一動(dòng)點(diǎn)F,當(dāng)ME+BE最小時(shí),求|CF﹣EF|的最大值及此時(shí)點(diǎn)F的坐標(biāo);
(3)如圖2,在y軸正半軸上取點(diǎn)Q,使得CB=CQ,點(diǎn)P是x軸上一動(dòng)點(diǎn),連接PC,將△CPQ沿PC折疊至△CPQ′.連接BQ,BQ′,QQ′,當(dāng)△BQQ′為等腰三角形時(shí),直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的頂點(diǎn)B在拋物線y=x2的第一象限部分,若B點(diǎn)的橫坐標(biāo)與縱坐標(biāo)之和等于6,則正方形OABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3;其中正確的結(jié)論是( )
A. ①②③ B. ①③④ C. ②③④ D. ①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車票收入支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費(fèi)用,提高車票價(jià)格;建議(Ⅱ)不改變車票價(jià)格,減少支出費(fèi)用. 下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
④ ③ ② ①
A. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)
C. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線分別交軸、軸于點(diǎn)A、B,拋物線過A,B兩點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過點(diǎn)P作PC 軸于點(diǎn)C,交拋物線于點(diǎn)D.
(1)若拋物線的解析式為,設(shè)其頂點(diǎn)為M,其對(duì)稱軸交AB于點(diǎn)N.
①求點(diǎn)M、N的坐標(biāo);
②是否存在點(diǎn)P,使四邊形MNPD為菱形?并說(shuō)明理由;
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線,使得以B、P、D為頂點(diǎn)的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com