【題目】如圖,在圓⊙O中,將弧AB沿弦AB折疊,使弧AB恰好經(jīng)過圓心O,點(diǎn)P是優(yōu)弧AMB上一點(diǎn),則∠APB的度數(shù)為_________.
【答案】60o
【解析】分析:作半徑OC⊥AB于D,連結(jié)OA、OB,如圖,根據(jù)折疊的性質(zhì)得OD=CD,則OD=OA,根據(jù)含30度的直角三角形三邊的關(guān)系得到∠OAD=30°,接著根據(jù)三角形內(nèi)角和定理可計(jì)算出∠AOB=120°,
然后根據(jù)圓周角定理計(jì)算∠APB的度數(shù).
如圖,作半徑OC⊥AB于D,連結(jié)OA、OB,
∵將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,
∴OD=CD,
∴OD= OC= OA,
∴∠OAD=30°,
又OA=OB,
∴∠OBA=30°,
∴∠AOB=120°,
∴∠APB= ∠AOB=60°
故答案為120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從正五邊形的五個(gè)頂點(diǎn)中,任取四個(gè)頂點(diǎn)連成四邊形,對(duì)于事件M:“這個(gè)四邊形是等腰梯形” .下列判斷正確的是( )
A. 事件M是不可能事件 B. 事件M是必然事件
C. 事件M發(fā)生的概率為 D. 事件M發(fā)生的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求兩個(gè)正整數(shù)的最大公約數(shù)是常見的數(shù)學(xué)問題,中國(guó)古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個(gè)正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說,要求兩個(gè)正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時(shí),此時(shí)的差(或減數(shù))即為這兩個(gè)正整數(shù)的最大公約數(shù).
例如:求91與56的最大公約數(shù)
解:
請(qǐng)用以上方法解決下列問題:
(1)求108與45的最大公約數(shù);
(2)求三個(gè)數(shù)78、104、143的最大公約數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,公共汽車行駛在筆直的公路上,這條路上有四個(gè)站點(diǎn),每相鄰兩站之間的距離為千米,從站開往站的車稱為上行車,從站開往站的車稱為下行車.第一班上行車、下行車分別從站、站同時(shí)發(fā)車,相向而行,且以后上行車、下行車每隔分鐘分別在站同時(shí)發(fā)一班車,乘客只能到站點(diǎn)上、下車(上、下車的時(shí)間忽略不計(jì)),上行車、 下行車的速度均為千米/小時(shí).
第一班上行車到站、第一班下行車到站分別用時(shí)多少?
第一班上行車與第一班下行車發(fā)車后多少小時(shí)相距千米?
一乘客在兩站之間的處,剛好遇到上行車,千米,他從處以千米/小時(shí)的速度步行到站乘下行車前往站辦事.
①若千米,乘客從處到達(dá)站的時(shí)間最少要幾分鐘?
②若千米,乘客從處到達(dá)站的時(shí)間最少要幾分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:
(1)填寫下表:
圖形序號(hào) | |||||
小圓個(gè)數(shù) |
(2)照這樣的規(guī)律搭下去,擺個(gè)這樣的圖形需要 個(gè)小圓.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,線段AB、CD相交于點(diǎn)O,連結(jié)AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于點(diǎn)M、N.試解答下列問題:
(1)在圖1中,請(qǐng)直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系;
(2)仔細(xì)觀察,在圖2中“8字形”有多少個(gè);
(3)圖2中,當(dāng)∠D=50°,∠B=40°時(shí),求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知△ABC和△BDE都是等邊三角形.則下列結(jié)論:
①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等邊三角形;⑤FG∥AD.其中正確的有( 。
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料;我們知道的幾何意義是在數(shù)軸上數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離.這個(gè)結(jié)論可以推廣為:表示在數(shù)軸上數(shù)與對(duì)應(yīng)點(diǎn)之間的距離.例:已知,求的值.
解:在數(shù)軸上與1的距離為2的點(diǎn)對(duì)應(yīng)數(shù)為3和,即的值為3和.
仿照閱讀材料的解法,解決下列問題:
(1)已知,的值為__________;
(2)若數(shù)軸上表示的點(diǎn)在與2之間,則的值為__________;
(3)當(dāng)滿足什么條件時(shí),有最小值,最小值是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是,點(diǎn)對(duì)應(yīng)的數(shù)是,一只小蟲從點(diǎn)出發(fā)沿著數(shù)軸的正方向以每秒個(gè)單位的速度爬行至點(diǎn),又立即返回到點(diǎn),共用了秒鐘.
點(diǎn)對(duì)應(yīng)的數(shù)是_.
若小蟲返回到點(diǎn)后再作如下運(yùn)動(dòng):第一次向右爬行個(gè)單位,第次向左爬行個(gè)單位,第三次向右爬行個(gè)單位,第四次向左爬行個(gè)單位,..依此規(guī)律爬下去, 它第次爬行所停的點(diǎn)所對(duì)應(yīng)的數(shù)是 .
第次爬行所停的點(diǎn)所對(duì)應(yīng)的數(shù)是
在的條件下,求小蟲第次爬行所停的點(diǎn)所對(duì)應(yīng)的數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com