【題目】如圖,為正方形外一點(diǎn),,,則的長(zhǎng)為________

【答案】

【解析】

過(guò)點(diǎn)EEFBCF,交ADG,作AE的垂直平分線交EF于點(diǎn)O,則點(diǎn)O是△ADE的外心,DG=a,則OE=OD=a,F(xiàn)G=2a,BF=a,在RtDEG中,利用勾股定理求出a2,再在RtEFB中,利用勾股定理求出BE即可.

過(guò)點(diǎn)EEFBCF,交ADG,作AE的垂直平分線交EF于點(diǎn)O,則點(diǎn)O是△ADE的外心,

∴∠AOD=2DEA=90°,OA=OD=OE,

OG=DG=AG,設(shè)DG=a,OE=OD=a,F(xiàn)G=2a,BF=a,

RtDEG,DE2=EG2+DG2,

9=(a+a)2+a2,解得a2=,

BE====3.

故答案為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD是△ABC的中線,AEBC,射線BEAD于點(diǎn)F,交⊙O于點(diǎn)G,點(diǎn)FBE的中點(diǎn),連接CE.

(1)求證:四邊形ADCE為平行四邊形;

(2)若BC=2AB,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀情境:在綜合實(shí)踐課上,同學(xué)們探究全等的等腰直角三角形圖形變化問(wèn)題

如圖1,,其中,,此時(shí),點(diǎn)與點(diǎn)重合,

操作探究1:1)小凡將圖1中的兩個(gè)全等的按圖2方式擺放,點(diǎn)落在上,所在直線交所在直線于點(diǎn),連結(jié),求證:

操作探究2:2)小彬?qū)D1中的繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角度,然后,分別延長(zhǎng),,它們相交于點(diǎn).如圖3,在操作中,小彬提出如下問(wèn)題,請(qǐng)你解答:

時(shí),求證:為等邊三角形;

②當(dāng)__________時(shí),.(直接回答即可)

操作探究3:3)小穎將圖1中的繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)角度,線段相交于點(diǎn),在操作中,小穎提出如下問(wèn)題,請(qǐng)你解答:

①如圖4,當(dāng)時(shí),直接寫(xiě)出線段的長(zhǎng)為_________

②如圖5,當(dāng)旋轉(zhuǎn)到點(diǎn)是邊的中點(diǎn)時(shí),直接寫(xiě)出線段的長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)足球進(jìn)校園活動(dòng)的開(kāi)展,某市舉行了中學(xué)生足球比賽活動(dòng)現(xiàn)從A,B,C三支獲勝足球隊(duì)中,隨機(jī)抽取兩支球隊(duì)分別到兩所邊遠(yuǎn)地區(qū)學(xué)校進(jìn)行交流.

(1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法(只選擇其中一種),表示出抽到的兩支球隊(duì)的所有可能結(jié)果;

(2)求出抽到B隊(duì)和C隊(duì)參加交流活動(dòng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn)、,拋物線經(jīng)過(guò)點(diǎn)、,且與軸的另一交點(diǎn)為,連接.

(1)求拋物線的解析式;

(2)點(diǎn)在線段上方的拋物線上,連接,若面積滿足求點(diǎn)的坐標(biāo);

(3)如圖2,中點(diǎn),設(shè)為線段上一點(diǎn)(不含端點(diǎn))連接。一動(dòng)點(diǎn)出發(fā),沿線段以每秒1個(gè)單位的速度運(yùn)動(dòng)到,再沿著線段以每秒個(gè)單位的速度運(yùn)動(dòng)到后停止。當(dāng)點(diǎn)的坐標(biāo)是多少時(shí),點(diǎn)在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少?最少時(shí)間是幾秒?

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,的角平分線.

1 2

1)如圖1,,,點(diǎn)在邊上,,請(qǐng)直接寫(xiě)出圖中所有與相等的線段.

2)如圖2,,如果,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD右側(cè)作△ADE,使AD=AE,DAE=BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=_______度;

(2)如圖2如果∠BAC=60°,則∠BCE=______度;

(3)設(shè)∠BAC=,BCE=

①如圖3,當(dāng)點(diǎn)D在線段BC上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

②當(dāng)點(diǎn)D在直線BC上移動(dòng),請(qǐng)直接寫(xiě)出之樣的數(shù)量關(guān)系,不用證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在日歷上,我們可以發(fā)現(xiàn)其中某些數(shù)滿足一定的規(guī)律,如圖是20128月份的日歷.我們?nèi)我膺x擇其中所示的方框部分,將每個(gè)方框部分中4個(gè)位置上的數(shù)交又相乘,再相減,例如:7×13-6×14=7,17×23-16×24=7,不難發(fā)現(xiàn),結(jié)果都是7.

①請(qǐng)你再選擇一個(gè)類(lèi)似的部分試一試,看看是否符合這個(gè)規(guī)律;

②請(qǐng)你利用整式的運(yùn)算對(duì)以上的規(guī)律加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】無(wú)錫市新區(qū)某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為250元,每桶水的進(jìn)價(jià)是5元,規(guī)定銷(xiāo)售單價(jià)不得高于12元/桶,也不得低于7元/桶,調(diào)查發(fā)現(xiàn)日均銷(xiāo)售量p(桶)與銷(xiāo)售單價(jià)x(元)的函數(shù)圖象如圖所示.

(1)求日均銷(xiāo)售量p(桶)與銷(xiāo)售單價(jià)x(元)的函數(shù)關(guān)系;

(2)若該經(jīng)營(yíng)部希望日均獲利1350元,那么銷(xiāo)售單價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案