【題目】如圖,在△ABC中,AB=BC=4,S△ABC=4 ,點P、Q、K分別為線段AB、BC、AC上任意一點,則PK+QK的最小值為 .
【答案】2
【解析】解:如圖,過A作AH⊥BC交CB的延長線于H,
∵AB=CB=4,S△ABC=4 ,
∴AH=2 ,
∴cos∠HAB= = ,
∴∠HAB=30°,
∴∠ABH=60°,
∴∠ABC=120°,
∵∠BAC=∠C=30°,
作點P關于直線AC的對稱點P′,
過P′作P′Q⊥BC于Q交AC于K,
則P′Q 的長度=PK+QK的最小值,
∴∠P′AK=∠BAC=30°,
∴∠HAP′=90°,
∴∠H=∠HAP′=∠P′QH=90°,
∴四邊形AP′QH是矩形,
∴P′Q=AH=2 ,
即PK+QK的最小值為2 .
所以答案是:2 .
【考點精析】本題主要考查了三角形的面積和矩形的性質的相關知識點,需要掌握三角形的面積=1/2×底×高;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N。
(1)求證:MN=AM+BN;
(2)若過點C在△ABC內作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關系?請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究:
(1)如圖①,在中,點、、分別在邊、、上,且,若,求的度數.請將下面的解答過程補充完整,并填空.
(1)解:
,
(兩直線平行,內錯角相等).
,
(___________________________________).
(__________________).
.
應用:
(2)如圖②,在中,點、、分別在邊、、的延長線上,且,,若,求的大。ㄓ煤的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“低碳環(huán)保,綠色出行”的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時騎車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館.小軍始終以同一速度騎行,兩人騎行的路程為y(米)與時間x(分鐘)的關系如圖.請結合圖象,解答下列問題:
(1)填空:a=________;b=________;m=________.
(2)若小軍的速度是 120 米/分,求小軍第二次與爸爸相遇時距圖書館的距離.
(3)在(2)的條件下,爸爸自第二次出發(fā)后,騎行一段時間后與小軍相距100 米,此時 小軍騎行的時間為________分鐘.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對全等三角形.其中正確結論的個數是
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經過第2017次運動后,動點P的坐標是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的有( )
①絕對值等于本身的數是正數;②將數60340精確到千位是③連接兩點的線段的長度就是兩點間的距離;④若AC=BC,則點C就是線段AB的中點.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com