觀察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,
把以上三個(gè)等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫(xiě)出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫(xiě)出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009
=
2008
2009
2008
2009

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

(3)探究并計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008
分析:觀察得到分子為1,分母為兩個(gè)相鄰整數(shù)的分?jǐn)?shù)可化為這兩個(gè)整數(shù)的倒數(shù)之差,即
1
n(n+1)
=
1
n
-
1
n+1
;然后根據(jù)此規(guī)律把各分?jǐn)?shù)轉(zhuǎn)化,再進(jìn)行分?jǐn)?shù)的加減運(yùn)算.對(duì)于(3)先提
1
4
出來(lái),然后和前面的運(yùn)算方法一樣.
解答:解:(1)
1
n(n+1)
=
1
n
-
1
n+1


(2)①
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009

=1-
1
2
+
1
2
-
1
3
+…+
1
2008
-
1
2009

=1-
1
2009

=
2008
2009
;
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
;

(3)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008

=
1
4
×(
1
1×2
+
1
2×3
+
1
3×4
+…+
1
1003×1004

=
1
4
×(1-
1
2
+
1
2
-
1
3
+…+
1
1003
-
1
1004

=
1
4
×(1-
1
1004

1
4
×
1003
1004

=
1003
4016

故答案為:
1
n
-
1
n+1
;
2008
2009
n
n+1
點(diǎn)評(píng):本題考查了關(guān)于數(shù)字變化的規(guī)律:通過(guò)觀察數(shù)字之間的變化規(guī)律,得到一般性的結(jié)論,再利用此結(jié)論解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個(gè)等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫(xiě)出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)計(jì)算:
1
1×2
+
1
2×3
+
1
3×4
+
+
1
n(n+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題:
(1)已知|a-2|+|b+6|=0,則a+b=
-4
-4

(2)觀察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個(gè)等式相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

①猜想并寫(xiě)出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

②直接寫(xiě)出結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007

(3)在數(shù)軸上有兩點(diǎn),它們到原點(diǎn)的距離分別是2和3,問(wèn)這兩點(diǎn)之間的距離是多少?
(4)求|
1
2
-1|+|
1
3
-
1
2
|+…+|
1
99
-
1
98
|+|
1
100
-
1
99
|的值.
(5)如圖所示,數(shù)軸上有四點(diǎn)A,B,C,D分別表示有理數(shù)a,b,c,d,用“<”把表示a,b,c,d,|a|,|b|,-|c|,-|d|的數(shù)連接起來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個(gè)等式相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫(xiě)出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫(xiě)出結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)直接寫(xiě)出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007
;
(2)探究并計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008

查看答案和解析>>

同步練習(xí)冊(cè)答案