【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價元,領(lǐng)帶每條定價元,廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:

買一套西裝送一條領(lǐng)帶;

西裝和領(lǐng)帶都按定價的付款.

現(xiàn)某客戶要到該服裝廠購買西裝套,領(lǐng)帶條().

(1)客戶分別按方案、方案購買,各需付款多少元?(用含的代數(shù)式表示);

(2)若,通過計算說明此時按哪種方案購買較為合算?

【答案】1)(40x+3200);(3600+36x);(2)方案購買較為合算.

【解析】

試題(1)方案需付費為:西裝總價錢+20條以外的領(lǐng)帶的價錢,方案需付費為:西裝和領(lǐng)帶的總價錢×90%

2)把x=30代入(1)中的兩個式子算出結(jié)果,比較即可.

試題解析:解:(1)方案需付費為:200×20+x﹣20×40=40x+3200)元;

方案需付費為:(200×20+40x×0.9=3600+36x)元;

2)當(dāng)x=30元時,方案需付款為:40x+3200=40×30+3200=4400元,方案需付款為:3600+36x=3600+36×30=4680元,∵44004680,選擇方案購買較為合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB1,BC3

1)在圖中,PBC上一點,EF垂直平分AP,分別交AD、BC邊于點EF,求證:四邊形AFPE是菱形;

2)在圖中利用直尺和圓規(guī)作出面積最大的菱形,使得菱形的四個頂點都在矩形ABCD的邊上,并直接標(biāo)出菱形的邊長.(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點設(shè)AC=2,BD=1,AP=xCMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一個平面內(nèi),,.

(1)填空:________;

(2)如果OD平分OE平分,那么的度數(shù)為;

(3)試問在(2)的條件下,如果將題目中改為,其他條件不變,你能求出的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點MDE的中點.過點EAD平行的直線交射線AM于點N

(1)當(dāng)A,B,C三點在同一直線上時(如圖1),求證:MAN的中點;

(2)將圖1中BCE繞點B旋轉(zhuǎn),當(dāng)A,B,E三點在同一直線上時(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點B旋轉(zhuǎn)到圖3的位置時,(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李購買了一套一居室,他準(zhǔn)備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)單位:米,解答下列問題:

用含mn的代數(shù)式表示地面的總面積S;

已知客廳面積是衛(wèi)生間面積的8倍,且衛(wèi)生間、臥室、廚房面積的和比客廳還少3平方米,如果鋪1平方米地磚的平均費用為100元,那么小李鋪地磚的總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校獎勵給王偉和李麗上海世博園門票共兩張,其中一張為指定日門票,另一張為普通日門票。王偉和李麗分別轉(zhuǎn)動下圖的甲、乙兩個轉(zhuǎn)盤(轉(zhuǎn)盤甲被二等分、轉(zhuǎn)盤乙被三等分)確定指定日門票的歸屬,在兩個轉(zhuǎn)盤都停止轉(zhuǎn)動后,若指針?biāo)傅膬蓚數(shù)字之和為 偶數(shù),則王偉獲得指定日門票;若指針?biāo)傅膬蓚數(shù)字之和為奇數(shù),則李麗獲得指定日門票;若指針指向分隔線,則重新轉(zhuǎn)動。你認(rèn)為這個方法公平嗎?請畫樹狀圖或列表,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC內(nèi)有一點D,AD=4BD=3,CD=5,將ABDA點逆時針旋轉(zhuǎn),使ABAC重合,點D旋轉(zhuǎn)至點E,則四邊形ADCE的面積為(  

A.12B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計算:()×(﹣36

2)計算:100÷(﹣22﹣(﹣2)÷(﹣

3)化簡:(﹣x2+3xy)﹣(﹣x2+4xyy2

4)先化簡后求值:x2+(2xy3y2)﹣2x2+yx2y2),其中x=﹣,y=3

查看答案和解析>>

同步練習(xí)冊答案