【題目】如圖,在等邊△ABC內(nèi)有一點(diǎn)D,AD=4,BD=3,CD=5,將△ABD繞A點(diǎn)逆時(shí)針旋轉(zhuǎn),使AB與AC重合,點(diǎn)D旋轉(zhuǎn)至點(diǎn)E,則四邊形ADCE的面積為( )
A.12B.C.D.
【答案】C
【解析】
此題連接DE,先利用旋轉(zhuǎn)和等邊三角形的性質(zhì)證明△ADE是等邊三角形,根據(jù)題意,由△ADE是等邊三角形依據(jù)勾股定理判定△CDE是直角三角形即可求四邊形的面積.
如圖:
連接DE,過點(diǎn)A作AN 垂直DE于點(diǎn)E,
根據(jù)題意由旋轉(zhuǎn)知AD=AE,∠BAD=∠CAE,
又∵等邊△ABC中,∠BAC=60°,
∴∠BAD+∠CAD=∠CAE+∠CAD,
即∠BAC=∠DAE=60°,
∴△ADE是等邊三角形,
∴DE=AD=4,
又BD=3,CD=5,
∴ ,
∴△CDE是直角三角形,
∵AD=4,∠ADE=60°,
∴∠DAN=30°,
∴DN=2,
由勾股定理得AN= ,
∵=,
,
,
∴,
即四邊形ADCE的面積是,
故答案為:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時(shí),它的周長最?最小值是多少?
【數(shù)學(xué)模型】
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)表達(dá)式為y=2(x+)(x>0).
【探索研究】
小彬借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+的圖象性質(zhì).
(1)結(jié)合問題情境,函數(shù)y=x+的自變量x的取值范圍是x>0,下表是y與x的幾組對(duì)應(yīng)值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①寫出m的值;
②畫出該函數(shù)圖象,結(jié)合圖象,得出當(dāng)x= 時(shí),y有最小值,y最小= ;
提示:在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r(shí),除了通過觀察圖象,還可以通過配方得到.試用配方法求函數(shù)y=x+(x>0)的最小值,解決問題(2)
【解決問題】
(2)直接寫出“問題情境”中問題的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)元,領(lǐng)帶每條定價(jià)元,廠方在開展促銷活動(dòng)期間,向客戶提供兩種優(yōu)惠方案:
①買一套西裝送一條領(lǐng)帶;
②西裝和領(lǐng)帶都按定價(jià)的付款.
現(xiàn)某客戶要到該服裝廠購買西裝套,領(lǐng)帶條().
(1)客戶分別按方案①、方案②購買,各需付款多少元?(用含的代數(shù)式表示);
(2)若,通過計(jì)算說明此時(shí)按哪種方案購買較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時(shí)分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時(shí)到達(dá)山頂C處,則小明的行走速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到△A′O′B.若反比例函數(shù)的圖象恰好經(jīng)過斜邊A′B的中點(diǎn)C,S△ABO=4,tan∠BAO=2,則k的值為( )
A.3 B.4 C.6 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由;
(3)點(diǎn)P是直線BD上一個(gè)動(dòng)點(diǎn),連接PC、PO,當(dāng)點(diǎn)P在直線BD上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求作圖,不要求寫做法,但要保留作圖痕跡.
(1)如圖1,四邊形ABCD是平行四邊形,E為BC上任意一點(diǎn),請(qǐng)只用直尺(不帶刻度)在邊AD上找點(diǎn)F,使DF=BE.
(2)如圖2,BE是菱形ABCD的邊AD上的高,請(qǐng)只用直尺(不帶刻度)作出菱形ABCD的邊AB上的高DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三年級(jí)的一場(chǎng)籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時(shí)離地面高m,與籃圈中心的水平距離為7m,當(dāng)球出手后水平距離為4m時(shí)到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.
(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式并判斷此球能否準(zhǔn)確投中?
(2)此時(shí),若對(duì)方隊(duì)員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com