【題目】如圖,在平面直角坐標(biāo)系上有個點(diǎn),點(diǎn)1次向上跳動1個單位至點(diǎn),緊接著第2次向右跳動2個單位至點(diǎn),第3次向上跳動1個單位,第4次向左跳動3個單位,第5次又向上跳動1個單位,第6次向右跳動4個單位,,依次規(guī)律跳動下去,點(diǎn)2019次跳動至點(diǎn)的坐標(biāo)是(

A.B.

C.D.

【答案】B

【解析】

設(shè)第n次跳動至點(diǎn)An,根據(jù)部分點(diǎn)An坐標(biāo)的變化找出變化規(guī)律“A4n-n-1,2n),A4n+1-n-1,2n+1),A4n+2n+1,2n+1),A4n+3n+1,2n+2)(n為自然數(shù)),依此規(guī)律結(jié)合2019=504×4+3即可得出點(diǎn)A2019的坐標(biāo).

解:設(shè)第n次跳動至點(diǎn)An,

觀察,發(fā)現(xiàn):A-1,0),A1-1,1),A21,1),A31,2),A4-2,2),A5-23),A623),A72,4),A8-3,4),A9-3,5),,

A4n-n-1,2n),A4n+1-n-1,2n+1),A4n+2n+12n+1),A4n+3n+1,2n+2)(n為自然數(shù)).

2019=504×4+3

A2019504+1,504×2+2),即

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠C90°,AC3,BC4,∠ABC和∠BAC的角平分線的交點(diǎn)是點(diǎn)D,則△ABD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,CD是弦,ABCDE,OFACF,BE=OF.

(1)求證:OFBC;

(2)求證:△AFO≌△CEB;

(3)若EB=5cm,CD=10cm,設(shè)OE=x,求x值及陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AD平分∠CAB,交CB于點(diǎn)D,DEAB,垂足為E,若AC=3,AB=5,則DE的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,在四邊形ABCD中,ABCD,點(diǎn)EBC的中點(diǎn),若AE是∠BAD的平分線,試判斷AB,ADDC之間的等量關(guān)系.

解決此問題可以用如下方法:延長AEDC的延長線于點(diǎn)F,易證△AEB≌△FEC得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個三角形中即可判斷.AB,AD,DC之間的等量關(guān)系______.

(2)同題探究.

①如圖②,AD是△ABC的中線,AB=6,AC=4,求AD的范圍:

②如圖③,在四邊形ABCD中,ABCD,AFDC的延長線交于點(diǎn)F,點(diǎn)EBC的中點(diǎn),若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于點(diǎn)和點(diǎn),點(diǎn)分別為線段的中點(diǎn),點(diǎn)上一動點(diǎn),當(dāng)最小時,點(diǎn)的坐標(biāo)為_________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn),直線軸、軸分別交于點(diǎn),的解析式為,的解析式為,兩直線的交點(diǎn)。

1)求直線的解析式;

2)求四邊形的面積;

3)當(dāng)時,直接寫出的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高.得到下面四個結(jié)論:①OA=OD;ADEF;③當(dāng)∠A=90°時,四邊形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述結(jié)論中正確的是( )

A. ②③ B. ②④ C. ①②③ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在由6個大小相同的小正方形組成的方格中:

1)如圖(1),ABC 的三個頂點(diǎn)A、B、C都在格點(diǎn)上,試判斷ABC的形狀,并加以證明;

2)如圖(2),連結(jié)三格和兩格的對角線,利用(1)的圖形特征,求出∠α+β的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案