【題目】八年級(1)班從學(xué)校出發(fā)去某景點旅游,全班分成甲、乙兩組,甲組乘坐大型客車,乙組乘坐小型客車.已知甲組比乙組先出發(fā),汽車行駛的路程(單位:)和行駛時間(單位:)之間的函數(shù)關(guān)系如圖所示.
根據(jù)圖象信息,回答下列問題:
(1)學(xué)校到景點的路程為_ ,甲組比乙組先出發(fā) , 組先到達旅游景點;
(2)求乙組乘坐的小型客車的平均速度;
(3)從圖象中你還能獲得哪些信息? (請寫出一條)
【答案】(1)55km,20min,乙;(2);(3)甲組在第30分鐘時,停了幾分鐘,然后又繼續(xù)行駛(答案不唯一)
【解析】
(1)圖象中s的最大值即為學(xué)校到景點的路程,由圖可知甲組在t=0時出發(fā),乙組在t=20時出發(fā),甲組在t=70時到達,乙組在t=60時到達,據(jù)此作答即可;
(2)乙組在t=20時出發(fā),在t=60時到達,則行駛時間為40分,總路程55km,用路程除以時間即可得速度;
(3)甲組在第30分鐘時,停了幾分鐘,然后又繼續(xù)行駛.
(1)由圖象可知學(xué)校到景點的路程為55km,甲組比乙組先出發(fā)20min,乙組先到達,
故答案為:55km,20min,乙;
(2)乙組行駛時間為60-20=40min=h,路程為55km
∴平均速度=
(2)由圖象還可得出:甲組在第30分鐘時,停了幾分鐘,然后又繼續(xù)行駛(答案不唯一)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AD=4,點E是對角線AC上一點,連接DE,過點E作EF⊥ED,交AB于點F,連接DF,交AC于點G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點N,若點F是AB的中點,則△EMN的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的甬江宛如一條玉帶穿城而過,數(shù)學(xué)課外實踐活動中,小林在甬江岸邊的A, B兩點處,利用測角儀分別對西岸的一觀景亭D進行測量.如圖,測得∠DAC=45°,∠DBC=65°,若AB=114米,求觀景亭D到甬江岸邊AC的距離約為多少米?
(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點B的坐標為(10,6),點P為BC邊上的動點,當(dāng)△POA為等腰三角形時,點P的坐標為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米,
(1)求圓弧所在的圓的半徑r的長;
(2)若拱頂離水面只有4米,即PE=4米時,求它的跨度A′B′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場第一次用元購進某款機器人進行銷售,很快銷售一空,商家又用元第二次購進同款機器人,所購進數(shù)量是第一次的倍,但單價貴了元.
(1)求該商家第一次購進機器人多少個?
(2)若所有機器人都按相同的標價銷售,要求全部銷售完畢的利潤率不低于不考慮其他因素,那么每個機器人的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B,點C在弧AB上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半徑為5cm,則△PDE的周長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com