【題目】ABC中,∠ACB=90°,AB=25,BC=15.

1)如圖1,折疊ABC使點(diǎn)A落在AC邊上的點(diǎn)D處,折痕交ACAB分別于Q、H,若,則HQ= .

2)如圖2,折疊ABC使點(diǎn)A落在BC邊上的點(diǎn)M處,折痕交AC、AB分別于E、F.FMA,求證:四邊形AEMF是菱形;

3)在(1)(2)的條件下,線段CQ上是否存在點(diǎn)P,使得CMPHQP相似?若存在,求出PQ的長;若不存在,請(qǐng)說明理由.

【答案】1HQ=5;(2)證明見解析;(3PQ=..

【解析】

1)利用勾股定理求出AC,設(shè)HQ=x,根據(jù)SABC=9SDHQ,構(gòu)建方程即可解決問題;

2)想辦法證明四邊相等即可解決問題;

3)設(shè)AE=EM=FM=AF=4m,則BM=3mFB=5m,構(gòu)建方程求出m的值,分兩種情形分別求解即可解決問題;

1)如圖1中,

在△ABC中,90°,AB=25,BC=15,

,設(shè)HQ=x,

故答案為:5.

2)如圖2中,

由翻折不變可知:AE=EM,AF=FM,AFE=MFE

.

3)如圖3中,

設(shè)AE=AE=FM=AF=4m,則BM=3m,FB=5m,

設(shè)PQ=x

當(dāng)時(shí),△HQPMCP

解得:

當(dāng)時(shí),△HQPPCM

解得:

經(jīng)檢驗(yàn):是分式方程的解,且符合題意,

綜上所訴,滿足條件長QP的值為或者.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)DDEACAC的延長線于點(diǎn)E,連接BD

1)求證:DE是⊙O的切線;

2)若BD3,AD4,則DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對(duì)稱軸為直線l:x=2,過點(diǎn)AACx軸交拋物線于點(diǎn)C,AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.

(1)求拋物線的解析式;

(2)若動(dòng)點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線的對(duì)稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年,國家衛(wèi)生健康委員會(huì)和國家教育部在全國開展了兒童青少年近視調(diào)查工作,調(diào)查數(shù)據(jù)顯示,全國兒童青少年近視過半.某校初三學(xué)習(xí)小組為了解本校學(xué)生對(duì)自己視力保護(hù)的重視程度,隨機(jī)在校內(nèi)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常重視”“重視”“比較重視”“不重視”四類,并將結(jié)果繪制成下面的兩幅不完整的統(tǒng)計(jì)圖:

根據(jù)圖中信息,解答下列問題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)該校共有學(xué)生1000人,請(qǐng)你估計(jì)該校對(duì)視力保護(hù)“非常重視”的學(xué)生人數(shù);

3)對(duì)視力“非常重視”的4人有兩名男生,兩名女生,若從中隨機(jī)抽取兩人向全校作視力保護(hù)交流,請(qǐng)利用樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE,將ADE沿AE對(duì)折到AFE,延長EF交邊BC于點(diǎn)G,連接AGCF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S=,其中正確的有( )個(gè).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A點(diǎn)坐標(biāo)為B點(diǎn)坐標(biāo)為,將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到線段B,則點(diǎn)坐標(biāo)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象經(jīng)過,兩點(diǎn),與反比例函數(shù)的圖象在第一象限內(nèi)的交點(diǎn)為

求一次函數(shù)和反比例函數(shù)的表達(dá)式;

x軸上是否存在點(diǎn)P,使?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程

1)求此方程的解;

2)聯(lián)系生活實(shí)際,編寫一道能用上述方程解決的應(yīng)用題(不需解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如下表

x

-2

-1

0

1

2

3

y

-4

0

2

2

0

-4

下列結(jié)論:①拋物線開口向下;②當(dāng)時(shí),yx的增大而減。虎蹝佄锞的對(duì)稱軸是直線;④函數(shù)的最大值為2.其中所有正確的結(jié)論為(

A.①②③B.①③C.①③④D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案