【題目】完成下面的證明
(1)如圖,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG∥CD(已知)
∴∠2=
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC∥
∴∠B+ =180°
又∵∠B=50°
∴∠BDE= .
【答案】∠1;DE;∠BDE;兩直線平行,同旁內(nèi)角互補;130°.
【解析】
由FG∥CD可得出∠2=∠1,結(jié)合∠1=∠3可得出∠3=∠2,利用“內(nèi)錯角相等,兩直線平行”可得出BC∥DE,再利用“兩直線平行,同旁內(nèi)角互補”結(jié)合∠B=50°即可求出∠BDE的度數(shù).
解:∵FG∥CD(已知),
∴∠2=∠1.
又∵∠1=∠3,
∴∠3=∠2(等量代換),
∴BC∥DE,
∴∠B+∠BDE=180°(兩直線平行,同旁內(nèi)角互補).
又∵∠B=50°,
∴∠BDE=130°.
故答案為:∠1;DE;∠BDE;兩直線平行,同旁內(nèi)角互補;130°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和直線CD相交于點O,OF平分∠COE,過點O作OG⊥OF.
(1)若∠AOE=80°,∠COF=22°,則∠BOD= ;
(2)若∠COE=40°,試說明:OG平分∠DOE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地要建造一個圓形噴水池,在水池中央垂直于地面安裝一個柱子OA,O恰為水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下.在過OA的任一平面上,建立平面直角坐標(biāo)系(如圖),水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是,則下列結(jié)論:(1)柱子OA的高度為3m;(2)噴出的水流距柱子1m處達到最大高度;(3)噴出的水流距水平面的最大高度是4m;(4)水池的半徑至少要3m才能使噴出的水流不至于落在池外.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個多項式,形式如下:
(1)求所捂的多項式;
(2)若x為正整數(shù),任取x的幾個值并求出所捂多項式的值,你能發(fā)現(xiàn)什么規(guī)律?
(3)若所捂多項式的值為144,請直接寫出正整數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD邊長為3,點E在AB邊上且BE=1,點P,Q分別是邊BC,CD的動點(均不與頂點重合),當(dāng)四邊形AEPQ的周長取最小值時,四邊形AEPQ的面積是( 。
A. 3 B. 5 C. 4 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知單位長度為1的方格中有三角形ABC.
(1)請畫出三角形ABC向上平移3格再向右平移2格后所得到的三角形A′B′C′;
(2)請以點A為坐標(biāo)原點建立平面直角坐標(biāo)系(在圖中畫出),然后寫出點B,B′的坐標(biāo);
(3)求出三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0
(1)證明:無論m為何值方程都有兩個實數(shù)根;
(2)是否存在正數(shù)m,使方程的兩個實數(shù)根的平方和等于26?若存在,求出滿足條件的正數(shù)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)(-)+(+)-(-)+(-)
(2)-54×÷(-)×
(3)-29×-(-)+29×(-)
(4)(--+)÷(-)
(5)-42+3×(-2)2+(-6)÷(-)2
(6)∣-∣÷(-)-×(-4)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com