【題目】解一元二次方程x2-2x-5=0,結果正確的是( 。
A.x1=-1+ ,x2=-1-
B.x1=1+ ,x2=1-
C.x1=7,x2= 5
D.x1= 1+ ,x2=1-

【答案】B
【解析】解答:方程兩邊同加上1,得x2-2x-5+1=1,
即x2-2x+1=6,
配方得(x-1)2=6,
開方得x-1=±
即x1=1+ ,x2=1-
所以選B .
分析:根據(jù)已知的方程選擇配方法解方程,求出方程的解即可.
【考點精析】掌握直接開平方法和公式法是解答本題的根本,需要知道方程沒有一次項,直接開方最理想.如果缺少常數(shù)項,因式分解沒商量.b、c相等都為零,等根是零不要忘.b、c同時不為零,因式分解或配方,也可直接套公式,因題而異擇良方;要用公式解方程,首先化成一般式.調整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計算方程判別式.判別式值與零比,有無實根便得知.有實根可套公式,沒有實根要告之.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC與BD相交于點O,在①AB∥CD;②AO=CO;③AD=BC中任意選取兩個作為條件,“四邊形ABCD是平行四邊形”為結論構造命題.
(1)以①②作為條件構成的命題是真命題嗎?若是,請證明;若不是,請舉出反例;
(2)寫出按題意構成的所有命題中的假命題,并舉出反例加以說明.(命題請寫成“如果…,那么….”的形式)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是四邊形ABCD對角線的交點,已知∠BAD+∠BCA=180°,AB=5,AC=4,AD=3,則BC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在RtABC中∠C=90°,CDAB邊上的高. 求證:Rt△ADCRtCDB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是多少斤(用含x的代數(shù)式表示)
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組管道如圖1所示,其中四邊形ABCD是矩形,O是AC的中點,管道由AB,BC,CD,DA,OA,OB,OC,OD組成,在BC的中點M 處放置了一臺定位儀器.一個機器人在管道內勻速行進,對管道進行檢測.設機器人行進的時間為x,機器人與定位儀器之間的距離為y,表示y與x的函數(shù)關系的圖象大致如圖2所示,則機器人的行進路線可能為( )

A.A→O→D
B.B→O→D
C.A→B→O
D.A→D→O

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OC平分∠AOB.請按要求畫圖并解答:

(1)在OC上任取一點D,畫點DOA、OB的垂線段DE、DF,垂足分別為點E、F,求證:OE=OF;

(2)過點DOB的平行線交OA于點G,求證:△ODG為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程或方程組解應用題:
為祝賀北京成功獲得2022年冬奧會主辦權,某工藝品廠準備生產紀念北京申辦冬奧會成功的“紀念章”和“冬奧印”.生產一枚“紀念章”需要用甲種原料4盒,乙種原料3盒;生產一枚“冬奧印”需要用甲種原料5 盒,乙種原料10 盒.該廠購進甲、乙兩種原料分別為20000盒和30000盒,如果將所購進原料正好全部都用完,那么能生產“紀念章”和“冬奧印”各多少枚?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若平面直角坐標系中的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”.規(guī)定“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.

(1)若動點P從坐標點M(1,1)出發(fā),按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,則點N的坐標為 , 點G的坐標為
(2)若動點P從坐標原點出發(fā),先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到點O.當△OBC∽△MNG(在(1)中的三角形).且相似比為2:1時,請你直接寫出“平移量”m , n , q
(3)在(1)、(2)的前提下,請你在平面直角坐標系中畫出△OBC與△MNG.

查看答案和解析>>

同步練習冊答案