【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(l,1),點B在x軸正半軸上,點D在第三象限的雙曲線y=上,過點C作CE//x軸交雙曲線于點E,連接BE,則△BCE的面積為________.
【答案】7
【解析】
作輔助線,構(gòu)建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD△DHC△CMB,根據(jù)點D的坐標表示:AG=DH=x1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據(jù)三角形面積公式可得結(jié)論.
過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,
設(shè)D(x,),
∵四邊形ABCD是正方形,
∴AD=CD=BC,∠ADC=∠DCB=90°,
易得△AGD△DHC△CMB,
∴AG=DH=x1,
∴DG=BM,
∴1=1x,
x=2,
∴D(2,3),CH=DG=BM=1=4,
∵AG=DH=1x=1,
∴點E的縱坐標為4,
當y=4時,x=,
∴E(-,4),
∴EH=2=,
∴CE=CHHE=4=,
∴S△CEB=CEBM=××4=7
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=75°,∠D=85°,則∠C= .
(2)已知:在“等對角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3.求對角線AC的長.
(3)已知:如圖2,在平面直角坐標系xOy中,四邊形ABCD是“等對角四邊形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣),點D在y軸上,拋物線y=ax2+bx+c(a<0)過點A、D,且當﹣2≤x≤2時,函數(shù)y=ax2+bx+c取最大值為3,求二次項系數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A的坐標為(0,7),點B的坐標為(0,3),點C的坐標為(3,0).
(1)在圖中作出△ABC的外接圓(保留必要的作圖痕跡,不寫作法),圓心坐標為 ______;
(2)若在x軸的正半軸上有一點D,且∠ADB=∠ACB,則點D的坐標為 ______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=與x軸交于A、B兩點,△ABC為等邊三角形,∠COD=60°,且OD=OC.
(1)A點坐標為 ,B點坐標為 ;
(2)求證:點D在拋物線上;
(3)點M在拋物線的對稱軸上,點N在拋物線上,若以M、N、O、D為頂點的四邊形為平行四邊形,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2014年巴西世界杯足球賽前夕,某體育用品店購進一批單價為40元的球服,如果按單價60元銷售,那么一個月內(nèi)可售出240套,根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷售量的減少,即銷售單價每提高5元,銷售量相應(yīng)減少20套,設(shè)銷售單價為x(x60)元,銷售量為y套.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當銷售單價為多少元時,且銷售額為14000元?
(3)當銷售單價為多少元時,才能在一個月內(nèi)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AE是⊙O的直徑,AF是⊙O的弦,AF⊥BC,垂足為D.
(1)求證:∠BAE=∠CAD.
(2)若⊙O的半徑為4,AC=5,CD=2,求CF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(x,y),如果點Q(x,y′)的縱坐標滿足y′=,那么稱點Q為點P的“關(guān)聯(lián)點”.
(1)請直接寫出點(3,5)的“關(guān)聯(lián)點”的坐標 ;
(2)如果點P在函數(shù)y=x﹣2的圖象上,其“關(guān)聯(lián)點”Q與點P重合,求點P的坐標;
(3)如果點M(m,n)的“關(guān)聯(lián)點”N在函數(shù)y=2x2的圖象上,當0≤m≤2時,求線段MN的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com