精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是邊BC中點,兩邊PE、PF分別交AB、AC于點E、F,當∠EPF在△ABC內繞頂點P旋轉時(點E不與A、B重合),給出以下四個結論:①AE=CF;②△EPF是等腰直角三角形;③四邊形AEPF的面積=△ABC的面積的一半,④當EF最短時,EF=AP,上述結論始終正確的個數為( 。

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

根據等腰直角三角形的性質可得∠BAP=C=45°,AP=CP,根據等角的余角相等求出∠APE=CPF,然后利用角邊角證明△AEP和△CPF全等,根據全等三角形對應邊相等可得AE=CF,PE=PF,全等三角形的面積相等求出S四邊形AEPF=SAPC然后解答即可

AB=AC,BAC=90°,∴△ABC是等腰直角三角形

∵點PBC的中點,∴∠BAP=C=45°,AP=CP

∵∠EPF是直角,∴∠APE+∠APF=CPF+∠APF=90°,∴∠APE=CPF

AEP和△CPF中,∵,∴△AEP≌△CPFASA),AE=CF,PE=PF,SAPE=SCPF,S四邊形AEPF=SAPC,S四邊形AEPF=SABC根據等腰直角三角形的性質,EF=PE,所以,EF隨著點E的變化而變化,只有當點EAB的中點時,EF=PE=AP,此時,EF最短;故①②③④正確

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB的垂直平分線分別交AB、BC于點M、P,AC的垂直平分線分別交AC、BC于點N、Q,∠BAC=110°,則∠PAQ=_____°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠A=60°,∠B=58°.甲、乙兩人想在△ABC外部取一點D,使得△ABC與△DCB全等,其作法如下:
(甲)①作∠A的角平分線L.
②以B為圓心,BC長為半徑畫弧,交L于D點,則D即為所求.
(乙)①過B作平行AC的直線L.
②過C作平行AB的直線M,交L于D點,則D即為所求.
對于甲、乙兩人的作法,下列判斷何者正確?( 。

A.兩人皆正確
B.兩人皆錯誤
C.甲正確,乙錯誤
D.甲錯誤,乙正確

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列計算,正確的是( )
A.(﹣2)2=4
B.
C.46÷(﹣2)6=64
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有一個安裝有進出水管的30升容器,水管每單位時間內進出的水量是一定的,設從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,得到水量(升)與時間(分)之間的函數關系如圖所示.根據圖象回答下列問題:

(1)求每分鐘進水多少升;

(2)若12分鐘后只放水,不進水,求需要多長時間可以把水放完;

(3)若從一開始進出水管同時打開,求需要多長時間可以將容器灌滿。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點MN,再分別以點M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖O是邊長為9的等邊三角形ABC內的任意一點,且ODBC,交AB于點D,OFAB,交AC于點F,OEAC,交BC于點E,則OD+OE+OF的值為( 。

A. 3 B. 6 C. 8 D. 9

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】等邊△ABC內有一點P,且PA=3,PB=4,PC=5,則∠APB=度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數y1=ax2+bx+c的圖象過點A(1,0),B(﹣3,0),C(0,﹣3)

(1)求此二次函數的解析式和頂點坐標;
(2)直線y2=kx+b過B、C兩點,請直接寫出當y1>y2時,自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案