【題目】如圖,在△ABC中,AB的垂直平分線分別交AB、BC于點(diǎn)M、P,AC的垂直平分線分別交AC、BC于點(diǎn)N、Q,∠BAC=110°,則∠PAQ=_____°.

【答案】40

【解析】

由在△ABC中,PM、QN分別是AB、AC的垂直平分線,根據(jù)線段垂直平分線的性質(zhì),可求得∠PAB=∠B,∠CAQ=∠C,又由∠BAC=110°,易求得∠PAB+∠CAQ的度數(shù),繼而求得答案.

∵在△ABC中,PM、QN分別是AB、AC的垂直平分線,∴PA=PB,AQ=CQ,∴∠PAB=∠B,∠CAQ=∠C,∵∠BAC=110°,∴∠B+∠C=180°-∠BAC=70°,∴∠PAB+∠CAQ=70°,∴∠PAQ=∠BAC-(∠PAB+∠CAQ)=110°-70°=40°.故答案為:40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABC中,DC,BD分別是∠ACB和∠ABC的平分線,且∠A=α

(1)用含α的代數(shù)式表示∠CDB;

(2)若把圖①中∠ACB的平分線DC改為∠ACB的外角的平分線(如圖②),怎樣用含α的代數(shù)式表示∠CDB.

(3)若把圖①中“DC,DB分別是∠ACB和∠ABC的平分線改成“DC,BD分別是∠ACB和∠ABC的外角的平分線,(如圖③),怎樣用含α的代數(shù)式表示∠CDB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CB,AD=CD,對(duì)角線AC,BD相交于點(diǎn)O,OEABOFCB,垂足分別是E、F.求證:OE=OF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人沿一條直路行走,此人離出發(fā)地的距離千米與行走時(shí)間分鐘的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖象提供的信息回答下列問題:

此人離開出發(fā)地最遠(yuǎn)距離是______ 千米;

此人在這次行走過程中,停留所用的時(shí)間為______ 分鐘;

由圖中線段OA可知,此人在這段時(shí)間內(nèi)行走的速度是每小時(shí)______ 千米;

此人在120分鐘內(nèi)共走了______ 千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀并理解下面的證明過程,并在每步后的括號(hào)內(nèi)填寫該步推理的依據(jù).

已知:如圖,AM,BN,CP是△ABC的三條角平分線.

求證:AM、BN、CP交于一點(diǎn).

證明:如圖,設(shè)AM,BN交于點(diǎn)O,過點(diǎn)O分別作OD⊥BC,OF⊥AB,垂足分別為點(diǎn)D,E,F(xiàn).

∵O是∠BAC角平分線AM上的一點(diǎn)(   ),

∴OE=OF(   ).

同理,OD=OF.

∴OD=OE(   ).

∵CP是∠ACB的平分線(   ),

∴O在CP上(   ).

因此,AM,BN,CP交于一點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑物BC頂部有一旗桿AB,且點(diǎn)A,B,C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點(diǎn)D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:| ﹣1|﹣ +

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=50°,ACB=60°,點(diǎn)EBC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點(diǎn)D,連接AD,以下結(jié)論:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正確的是__________(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是邊BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③四邊形AEPF的面積=△ABC的面積的一半,④當(dāng)EF最短時(shí),EF=AP,上述結(jié)論始終正確的個(gè)數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案