如圖,小明在一次高爾夫球訓(xùn)練中,從山坡下P點(diǎn)打出一球向球洞A點(diǎn)飛去,球的飛行路線為拋物線,如果不考慮空氣阻力,當(dāng)球達(dá)到最大高度BD為12米時(shí),球移動(dòng)的水平距離PD為9米 .已知山坡PA與水平方向PC的夾角為30o,AC⊥PC于點(diǎn)C, P、A兩點(diǎn)相距米.請(qǐng)你建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系解決下列問題.

(1)求水平距離PC的長(zhǎng);
(2)求出球的飛行路線所在拋物線的解析式;
(3)判斷小明這一桿能否把高爾夫球從P點(diǎn)直接打入球洞A.
(1)12m;(2);(3)不能

試題分析:(1)由題意得,由即可求得結(jié)果;
(2)以P為原點(diǎn),PC所在直線為x軸建立如圖所示的平面直角坐標(biāo)系,可知:頂點(diǎn)B(9,12),拋物線經(jīng)過原點(diǎn),則設(shè)拋物線的解析式為,再把原點(diǎn)坐標(biāo)代入即可求得結(jié)果;
(3)由(1)知C(12,0),易求得,從而得到點(diǎn)A的坐標(biāo),再代入(2)中的函數(shù)關(guān)系式即可判斷.
(1)由題意得


∴PC的長(zhǎng)為12m;
(2)以P為原點(diǎn),PC所在直線為x軸建立如圖所示的平面直角坐標(biāo)系,

可知:頂點(diǎn)B(9,12),拋物線經(jīng)過原點(diǎn)
∴設(shè)拋物線的解析式為
,解得

(3)由(1)知C(12,0),易求得   

當(dāng)x=12時(shí),
∴小明不能一桿把高爾夫球從P點(diǎn)直接打入球洞A.
點(diǎn)評(píng):解答本題的關(guān)鍵是讀懂題意,正確畫出圖形,注意當(dāng)明確了圖象的頂點(diǎn)時(shí),二次函數(shù)關(guān)系式一半設(shè)成頂點(diǎn)式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)A(0,4),B(-3,4),C(-6,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1個(gè)單位/秒的速度在y軸上向下運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā)以2個(gè)單位/秒的速度在x軸上向右運(yùn)動(dòng),過點(diǎn)P作PD⊥y軸,交OB于D,連接DQ.當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),兩動(dòng)點(diǎn)均停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t=1時(shí),求線段DP的長(zhǎng);
(2)連接CD,設(shè)△CDQ的面積為S,求S關(guān)于t的函數(shù)解析式,并求出S的最大值;
(3)運(yùn)動(dòng)過程中是否存在某一時(shí)刻,使△ODQ與△ABC相似?若存在,請(qǐng)求出所有滿足要求的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線與拋物線交于點(diǎn)A(1,),與軸交于點(diǎn)C.
(1)求拋物線的解析式和點(diǎn)C的坐標(biāo);
(2)把(1)中的拋物線向右平移2個(gè)單位,再向上平移個(gè)單位(>0),拋物線與軸交于P、Q兩點(diǎn),過C、P、Q三點(diǎn)的圓恰好以CQ為直徑,求的值;
(3)如圖,把拋物線向右平移2個(gè)單位,再向上平移個(gè)單位(>0),拋物線與軸交于P、Q兩點(diǎn),過C、P、Q三點(diǎn)的圓的面積是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值和此時(shí)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某校舉行第15屆校田徑運(yùn)動(dòng)會(huì),九年級(jí)甲、乙兩位同學(xué)報(bào)名參加了男子鉛球項(xiàng)目.已知甲、乙兩位同學(xué)獲得最好成績(jī)時(shí)鉛球行進(jìn)的高度y(m)與水平距離x(m)之間的關(guān)系分別是,那么在這次比賽中,成績(jī)較好的學(xué)生是(     )
A.甲B.乙C.甲、乙成績(jī)相同D.無法比較

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一坐標(biāo)系內(nèi)的圖象可能為                      (     )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,經(jīng)過原點(diǎn)的拋物線軸的另一個(gè)交點(diǎn)為A.過點(diǎn)作直線軸于點(diǎn)M,交拋物線于點(diǎn)B,過點(diǎn)B作直線BC∥軸與拋物線交于點(diǎn)C(B、C不重合),連結(jié)CP.

(1)當(dāng)時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);
(2)當(dāng)時(shí),連結(jié)CA,問為何值時(shí)
(3)過點(diǎn)P作,問是否存在,使得點(diǎn)E落在坐標(biāo)軸上?若存在,求出所有滿足要求的的值,并求出相對(duì)應(yīng)的點(diǎn)E坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,二次函數(shù),當(dāng)時(shí)自變量x的取值范圍是      。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“十八大”報(bào)告一大亮點(diǎn)就是關(guān)注民生問題,交通問題已經(jīng)成了全社會(huì)關(guān)注的熱點(diǎn).為了解新建道路的通行能力,某研究表明,某種情況下,車流速度 (單位:千米/時(shí))是車流密度(單位:輛/千米)的函數(shù),函數(shù)圖象如圖所示.

(1)求關(guān)于的函數(shù)表達(dá)式;
(2)車流量是單位時(shí)間內(nèi)通過觀測(cè)點(diǎn)的車輛數(shù),計(jì)算公式為:車流量=車流速度×車流密度.若車流速度低于80千米/時(shí),求當(dāng)車流密度為多少時(shí),車流量(單位:輛/時(shí))達(dá)到最大,并求出這一最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù))的圖象如圖所示,有下列結(jié)論:⑴abc>0;⑵a+b+c>0;⑶a-b+c<0;其中正確的結(jié)論有(   )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案