【題目】“校園安全”受到全社會的廣泛關注,信豐縣某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖所示的兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題

(1)接受問卷調(diào)查的學生共有  人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形圓心角是  度;

(2)請補全條形統(tǒng)計圖;

(3)若該中學共有學生1200人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).

【答案】(1)60,90;(2)補圖見解析;(3)400人.

【解析】

(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學生數(shù),繼而求得扇形統(tǒng)計圖中基本了解部分所對應扇形的圓心角;

(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;

(3)利用樣本估計總體的方法,即可求得答案.

(1)∵了解很少的有30人,占50%,

∴接受問卷調(diào)查的學生共有:30÷50%=60(人);

∴扇形統(tǒng)計圖中基本了解部分所對應扇形的圓心角為:×360°=90°;

故答案為:60,90;

(2)60﹣15﹣30﹣10=5;

補全條形統(tǒng)計圖得:

(3)根據(jù)題意得:1200×=400(人),

則估計該中學學生中對校園安全知識達到了解基本了解程度的總?cè)藬?shù)為400人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在y軸正半軸上依次截取OA1=A1A2=A2A3=…=An1An(n為正整數(shù)),過A1 , A2 , A3 , …,An分別作x軸的平行線,與反比例函數(shù)y= (x>0)交于點B1 , B2 , B3 , …,Bn , 如圖所示的Rt△B1C1B2 , Rt△B2C2B3 , Rt△B3C3B4 , …,Rt△Bn1Cn1Bn面積分別記為S1 , S2 , S3 , …,Sn1 , 則S1+S2+S3+…+Sn1=(

A.1
B.2
C.1﹣
D.2﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,O是BC邊上一點,以O為圓心的半圓分別與AB、AC邊相切于D、E兩點,連接OD.已知BD=2,AD=3.
求:
(1)tanC;
(2)圖中兩部分陰影面積的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正兩位數(shù)的個位數(shù)字是a,十位數(shù)字比個位數(shù)字大2.

(1)列式表示這個兩位數(shù);

(2)把這個兩位數(shù)的十位上的數(shù)字與個位上的數(shù)字交換位置得到一個新的兩位數(shù),試說明新數(shù)與原數(shù)的和能被22整除.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBC,AE平分BAC,B=70°C=30°.求:

1BAE的度數(shù);

2DAE的度數(shù);

3探究:小明認為如果條件B=70°,C=30°改成B-C=40°,也能得出DAE的度數(shù)?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A、B在數(shù)軸上表示的數(shù)分別為m、n.

(1)對照數(shù)軸完成下表:

(2)若A、B兩點間的距離為d,試寫出dm、n之間數(shù)量關系,并用文字語言描述

這個數(shù)量關系;

(3)已知A、B兩點在數(shù)軸上表示的數(shù)分別為x-2,則A、B兩點的距離d可表示

;如果d=3,求x的值。

(4)若數(shù)軸上表示數(shù)m的點位于表示數(shù)-53的點之間,求|m+5|+|m-3|的值(用含x的式子表示);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,ABCD的四個頂點的坐標分別為A(0,8),B(﹣6,8),C(﹣6,0),D(0,0),現(xiàn)有動點P在線段CB上運動,當△ADP為等腰三角形時,P點坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線l1經(jīng)過點E(1,0)和F(5,0),并交y軸于D(0,﹣5);拋物線l2:y=ax2﹣(2a+2)x+3(a≠0),
(1)試求拋物線l1的函數(shù)解析式;
(2)求證:拋物線 l2與x軸一定有兩個不同的交點;
(3)若a=1,拋物線l1、l2頂點分別為、;當x的取值范圍是時,拋物線l1、l2 上的點的縱坐標同時隨橫坐標增大而增大;
(4)若a=1,已知直線MN分別與x軸、l1、l2分別交于點P(m,0)、M、N,且MN∥y軸,當1≤m≤5時,求線段MN的最大值.

查看答案和解析>>

同步練習冊答案