【題目】ABC是等腰直角三角形,點(diǎn)E為線段AC上一點(diǎn)(E點(diǎn)不和AC兩點(diǎn)重合),連接BE并延長(zhǎng)BE,在BE的延長(zhǎng)線上找一點(diǎn)D,使ADCD,點(diǎn)F為線段AD上一點(diǎn)(F點(diǎn)不和AD兩點(diǎn)重合),連接CF,交BD于點(diǎn)G

1)如圖1,若AB,CD1,F是線段AD的中點(diǎn),求CF;

2)如圖2,若點(diǎn)E是線段AC中點(diǎn),CFBD,求證:CF+DEBE

【答案】1;(2)詳見解析.

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)得到,根據(jù)勾股定理得到,根據(jù)線段的中點(diǎn)的定義得到,于是得到結(jié)論;

2)過ABDH,得到,根據(jù)全等三角形的性質(zhì)得到,推出四邊形AHCD是矩形,得到,根據(jù)全等三角形的性質(zhì)得到,于是得到結(jié)論.

1是等腰直角三角形,

F是線段AD的中點(diǎn)

;

2)過ABDH

∵點(diǎn)E是線段AC中點(diǎn)

中,

∴四邊形AHCD是平行四邊形

∴四邊形AHCD是矩形

中,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若從 -3,-1,0,1,3這五個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù)記為a,再?gòu)氖O碌乃膫(gè)數(shù)中任意抽取一個(gè)數(shù)記為b,恰好使關(guān)于x,y的二元一次方程組有整數(shù)解,且點(diǎn)(a,b)落在雙曲線上的概率是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程

求證:無論取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;

當(dāng)拋物線為正整數(shù))圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),求此拋物線的解析式;

已知拋物線恒過定點(diǎn),求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ykxk0)經(jīng)過點(diǎn)(mm)(m0).線段BC的兩個(gè)端點(diǎn)分別在x軸與直線ykx上滑動(dòng)(B、C均與原點(diǎn)O不重合),且BC.分別作BPx軸,CP⊥直線ykx,直線BPCP交于點(diǎn)P.經(jīng)探究,在整個(gè)滑動(dòng)過程中,O、P兩點(diǎn)間的距離為定值,則該距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

運(yùn)用對(duì)稱性畫出這個(gè)函數(shù)的圖象;

根據(jù)圖象,寫出當(dāng)時(shí),的取值范圍;

將此圖象沿軸怎樣平移,使平移后圖象經(jīng)過點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BD是對(duì)角線.分別過點(diǎn)ACAEBD于點(diǎn)E,CFBD于點(diǎn)F,且AE=CF

1)求證:ABCD

2)若EBF中點(diǎn),且△ABE的面積為1,則四邊形ABCD的面積為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)活動(dòng)中,李明利用一根栓有小錘的細(xì)線和一個(gè)半圓形量角器制作了一個(gè)測(cè)角儀,去測(cè)量學(xué)校內(nèi)一座假山的高度CD.如圖,已知小明距假山的水平距離BD為12m,他的眼鏡距地面的高度為1.6m,李明的視線經(jīng)過量角器零刻度線OA和假山的最高點(diǎn)C,此時(shí),鉛垂線OE經(jīng)過量角器的60°刻度線,則假山的高度為【 】

A.(4+1.6)m B.(12+1.6)m C.(4+1.6)m D.4m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DM、EN分別垂直平分ACBC,交ABMN,

1)若△CMN的周長(zhǎng)為18cm,求AB的長(zhǎng).

2)若∠MCN48°,求∠ACB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案