【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過點(diǎn)A(13,0),直線y=kx﹣3k+4與⊙O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為 .
【答案】24
【解析】解:∵直線y=kx﹣3k+4=k(x﹣3)+4,
∴k(x﹣3)=y﹣4,
∵k有無數(shù)個(gè)值,
∴x﹣3=0,y﹣4=0,解得x=3,y=4,
∴直線必過點(diǎn)D(3,4),
∴最短的弦CB是過點(diǎn)D且與該圓直徑垂直的弦,
∵點(diǎn)D的坐標(biāo)是(3,4),
∴OD=5,
∵以原點(diǎn)O為圓心的圓過點(diǎn)A(13,0),
∴圓的半徑為13,
∴OB=13,
∴BD=12,
∴BC的長(zhǎng)的最小值為24;
故答案為:24.
根據(jù)直線y=kx﹣3k+4必過點(diǎn)D(3,4),求出最短的弦CB是過點(diǎn)D且與該圓直徑垂直的弦,再求出OD的長(zhǎng),再根據(jù)以原點(diǎn)O為圓心的圓過點(diǎn)A(13,0),求出OB的長(zhǎng),再利用勾股定理求出BD,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,點(diǎn)E在BC邊上,∠BAC=∠DAE,∠B=∠D, AB=AD.
(1)試說明△ABC≌△ADE;
(2)如果∠AEC=75°,將△ADE繞點(diǎn)A旋轉(zhuǎn)一個(gè)銳角后與△ABC重合,求這個(gè)旋轉(zhuǎn)角的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】爸爸開車帶著小明在公路上勻速行駛,小明每隔一段時(shí)間看到的里程碑上的數(shù)如下
時(shí)刻 | 9:00 | 9:45 | 12:00 |
碑上的數(shù) | 是一個(gè)兩位數(shù),數(shù)字之和是9 | 十位與個(gè)位數(shù)字與9:00時(shí)所看到的正好相反 | 比9:00時(shí)看到的兩位數(shù)中間多了個(gè)0 |
9:00時(shí)看到的兩位數(shù)是( 。
A. 54 B. 45 C. 36 D. 27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD的兩條對(duì)角線分別為6和8,M、N分別是邊BC、CD的中點(diǎn),P是對(duì)角線BD上一點(diǎn),則PM+PN的最小值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y= x,過點(diǎn)M(2,0)作x軸的垂線交直線l于點(diǎn)N,過點(diǎn)N作直線l的垂線交x軸于點(diǎn)M1;過點(diǎn)M1作x軸的垂線交直線l于N1 , 過點(diǎn)N1作直線l的垂線交x軸于點(diǎn)M2 , …;按此作法繼續(xù)下去,則點(diǎn)M10的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=AC,D、E、F 分別為 AB、BC、AC 上的點(diǎn),且BD=CE,∠DEF=∠B.
(1)求證:∠BDE=∠CEF;
(2)當(dāng)∠A=60°時(shí),求證:△DEF 為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點(diǎn)經(jīng)過旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60°,又從A點(diǎn)測(cè)得D點(diǎn)的俯角β為30°,若旗桿底點(diǎn)G為BC的中點(diǎn),則矮建筑物的高CD為( )
A.20米
B.10 米
C.15 米
D.5 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù) (k為常數(shù),且k≠0)的圖象都經(jīng)過點(diǎn)A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時(shí),y1和y2的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com