【題目】如圖,在Rt△ABC中,∠ACB=90°,AC的垂直平分線EF交AC于點D,交AB于點F,且CE=BF.

(1)求證:四邊形AECF是菱形;

(2)當∠BAC的度數(shù)為多少時,四邊形AECF是正方形.

【答案】(1)證明見詳解;(2)BAC=45.

【解析】

(1) 根據(jù)中垂線的性質(zhì):中垂線上的點到線段兩個端點的距離相等, BE=EC, BF=FC, 根據(jù)四邊相等的四邊形是菱形即可判斷;

(2)由菱形的性質(zhì)知,對角線平分一組對角,即當∠BAC=45,EAF=90,則菱形AECF為正方形.

證明: (1)

AC的垂直平分線EF交AC于點D

CD=AD,ADF=90,EC=AE,CF=AF,

又∠ACB=90°,EFBC,

ADF∽△ACB,

AF:AB=AD:AC, CD=AD,DAC的中點,

AF:AB=AD:AC=1:2,

FAB中點,

BF=AF,Rt△ABC中,∠ACB=90°, CF=AF,

CE=BF, CF=AF, EC=AE,CF=AF

CE= CF= AF= AE

四邊形BECF是菱形.

(2)當∠BAC=45, 四邊形AECF是正方形.

證明:BAC=45,四邊形AECF是菱形,

∠EAC=∠BAC=45,

∠EAF =∠EAC+∠BAC =90,

菱形AECF是正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某公園內(nèi)有座橋,橋的高度是5米,CBDB,坡面AC的傾斜角為45°,為方便老人過橋,市政部門決定降低坡度,使新坡面DC的坡度為i= :3.若新坡角外需留下2米寬的人行道,問離原坡角(A點處)6米的一棵樹是否需要移栽?(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2-4x+3.

(1)用配方法求其圖象的頂點C的坐標,并描述該函數(shù)的函數(shù)值隨自變量的增減而變化的情況;

(2)求函數(shù)圖象與x軸的交點A,B的坐標,及△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列說法,其中正確的是(

①關于的一元二次方程,若,則方程一定沒有實數(shù)根;

②關于的一元二次方程,若,則方程必有實數(shù)根;

③若是方程的根,則;

④若,,為三角形三邊,方程有兩個相等實數(shù)根,則該三角形為直角三角形.

A. ①② B. ①④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣23).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點C沿y軸向下平移4個單位長度至點F,連接AFBF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是BC,AB, AC的中點,則下列四個判斷中不一定正確的是( )

A. 四邊形AEDF一定是平行四邊形

B. 若∠A=90°,則四邊形AEDF是矩形

C. AD平分∠A,則四邊形AEDF是正方形

D. ADBC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,已知折痕與邊BC交于點O,連結(jié)AP、OP、OA.

(1)求證:OCP∽△PDA;

(2)若OCPPDA的面積比為1:4,求邊AB的長;

(3)如圖2,擦去折痕AO、線段OP,連結(jié)BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連結(jié)MNPB于點F,作MEBP于點E.探究:當點M、N在移動過程中,線段EF與線段PB有何數(shù)量關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有一面12米長的墻,某農(nóng)戶計劃用28米長的籬笆靠墻圍成一個矩形養(yǎng)雞場ABCD(籬笆只圍ABBC、CD三邊),其示意圖如圖所示.

(1)若矩形養(yǎng)雞場的面積為92平方米,求所用的墻長AD.(結(jié)果精確到0.1米)(參考數(shù)據(jù)=1.41,=1.73,=2.24)

(2)求此矩形養(yǎng)雞場的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c滿足下表:下列說法:①該函數(shù)圖像為開口向下的拋物線;②該函數(shù)圖像的頂點坐標為:(1,3);③方程ax2+bx+c=-223之間存在一個根;④A(-2018,m),B(2019,n)在該二次函數(shù)圖像上,則m>n.其中正確的是_______(只需寫出序號).

x

-1

0

1

2

y

-5

1

3

1

查看答案和解析>>

同步練習冊答案