【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),平移拋物線y=x2﹣2x+3,使平移后的拋物線經(jīng)過點(diǎn)A(﹣2,0),且與y軸交于點(diǎn)B,同時(shí)滿足以A,O,B為頂點(diǎn)的三角形是等腰直角三角形,求平移后的拋物線的解析式.
【答案】解:∵點(diǎn)B在y軸上,且△AOB是等腰直角三角形,A(﹣2,0), ∴點(diǎn)B的坐標(biāo)為(0,2)或(0,﹣2),
根據(jù)題意設(shè)平移后拋物線解析式為y=x2+bx+c,
將(﹣2,0)、(0,2)代入得:
,
解得: ,
∴此時(shí)拋物線解析式為y=x2+3x+2;
將(﹣2,0)、(0,﹣2)代入得:
,
解得: ,
∴此時(shí)拋物線解析式為y=x2+x﹣2,
綜上,平移后拋物線解析式為y=x2+3x+2或y=x2+x﹣2
【解析】利用A點(diǎn)坐標(biāo)和等腰三角形的性質(zhì)可求得B點(diǎn)坐標(biāo),設(shè)出平移后的拋物線的解析式,把A、B的坐標(biāo)代入可求得平移后的拋物線的解析式.
【考點(diǎn)精析】通過靈活運(yùn)用等腰直角三角形和二次函數(shù)圖象的平移,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點(diǎn)O,CD是弦,且CD⊥AB于點(diǎn)F,連接AD,過點(diǎn)B的直線與線段AD的延長(zhǎng)線交于點(diǎn)E,且∠E=∠ACF. 求證:直線BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD⊥AC于點(diǎn)D,CE⊥AB于點(diǎn)E,BD,CE交于點(diǎn)O,F(xiàn)為BC的中點(diǎn),連接EF,DF,DE,則下列結(jié)論:①EF=DF;②ADAC=AEAB;③△DOE∽△COB;④若∠ABC=45°時(shí),BE= FC. 其中正確的是(把所有正確結(jié)論的序號(hào)都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=ax+b的圖象與反比例 函數(shù)y2= 的圖象交于M,N兩點(diǎn).
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)觀察圖象,比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)A,B的坐標(biāo)分別為(4,0)、(4,n),若經(jīng)過點(diǎn)O、A的拋物線y=﹣x2+bx+c的頂點(diǎn)C落在邊OB上,則圖中陰影部分圖形的面積和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=﹣x+2經(jīng)過A、C兩點(diǎn),且AB=2.
(1)求拋物線的解析式;
(2)若直線l平行于x軸,直線l從點(diǎn)C出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿y軸負(fù)半軸方向向點(diǎn)O運(yùn)動(dòng),到點(diǎn)O停止,且分別交線段AC、線段BC、拋物線、y軸于點(diǎn)E、D、F(點(diǎn)F在對(duì)稱軸的右側(cè))、H,當(dāng)點(diǎn)D是線段EF的三等分點(diǎn)時(shí),求t的值;
(3)如圖②,在直線l運(yùn)動(dòng)的過程中,過點(diǎn)D作x軸的垂線交x軸于點(diǎn)G,四邊形OHDG與△AOC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AC是⊙O的弦,過點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)P,連接BC.
(1)求證:∠PCA=∠B;
(2)填空:已知∠P=40°,AB=12cm,點(diǎn)Q在 上,從點(diǎn)A開始以πcm/s的速度逆時(shí)針運(yùn)動(dòng)到點(diǎn)C停止,設(shè)運(yùn)動(dòng)時(shí)間為ts. ①當(dāng)t=時(shí),以點(diǎn)A、Q、B、C為頂點(diǎn)的四邊形面積最大;
②當(dāng)t=時(shí),四邊形AQBC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A在第一象限,AB∥x軸,AD∥y軸,且對(duì)角線的交點(diǎn)與原點(diǎn)O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長(zhǎng)始終保持不變,則經(jīng)過動(dòng)點(diǎn)A的反比例函數(shù)y= (k≠0)中k的值的變化情況是( )
A.一直增大
B.一直減小
C.先增大后減小
D.先減小后增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C,連結(jié)AA1 , 若∠AA1B1=15°,則∠B的度數(shù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com