【題目】如圖1,在平面直角坐標系中,直線AB與軸交于點A,與軸交于點B,與直線OC:交于點C.
(1)若直線AB解析式為,
①求點C的坐標;
②求△OAC的面積.
(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線段OA、OE上的動點,連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值;若不存在,說明理由.
【答案】(1)①C(4,4);②12;(2)存在,3
【解析】
試題(1)①聯(lián)立兩個函數(shù)式,求解即可得出交點坐標,即為點C的坐標;
②欲求△OAC的面積,結(jié)合圖形,可知,只要得出點A和點C的坐標即可,點C的坐標已知,利用函數(shù)關(guān)系式即可求得點A的坐標,代入面積公式即可;
(2)在OC上取點M,使OM=OP,連接MQ,易證△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三點共線,又AB⊥OP,可得∠AEO=∠CEO,即證△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面積為6,即可得出AM=3,AQ+PQ存在最小值,最小值為3.
(1)①由題意,
解得所以C(4,4);
②把代入得,,所以A點坐標為(6,0),
所以;
(2)由題意,在OC上截取OM=OP,連結(jié)MQ
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
當(dāng)A、Q、M在同一直線上,且AM⊥OC時,AQ+MQ最。
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面積為12,所以AM=12÷4=3,
∴AQ+PQ存在最小值,最小值為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD內(nèi)有一點F,F(xiàn)B與FC分別平分∠ABC和∠BCD,點E為矩形ABCD外一點,連接BE,CE.現(xiàn)添加下列條件:①EB∥CF,CE∥BF;②BE=CE,BE=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF,其中能判定四邊形BECF是正方形的共有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,點為的中點,如果點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.
(1)若點與點的運動速度相等,經(jīng)過1秒后,與是否全等?請說明理由;
(2)若點與點的運動速度不相等,當(dāng)點的運動速度為多少時,能使與全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b-<0時x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,點E在BC上,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處.
(1)求線段DC的長度;
(2)求△FED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,點C的坐標為(-18,0).
(1)求點B的坐標;
(2)若直線DE交梯形對角線BO于點D,交y軸于點E,且OE=4,∠OFE=45°,求直線DE的解析式;
(3)求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為1,等腰直角三角形ABC的頂點B的坐標為(,0),CAB=90°, AC=AB,頂點A在⊙O上運動.
(1)設(shè)點A的橫坐標為x,△ABC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出S的最大值與最小值;(2)當(dāng)直線AB與⊙O相切時,求AB所在直線對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)判斷△BDC的形狀,并給出證明;當(dāng)P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com