【題目】在平面直角坐標(biāo)系中,我們把橫 、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).已知點(diǎn)
A(0,4),點(diǎn)B是軸正半軸上的整點(diǎn),記△AOB內(nèi)部(不包括邊界)的整點(diǎn)個(gè)數(shù)為m.當(dāng)m=3時(shí),點(diǎn)B的橫坐標(biāo)的所有可能值是 ▲ ;當(dāng)點(diǎn)B的橫坐標(biāo)為4n(n為正整數(shù))時(shí),m= (用含n的代數(shù)式表示.)
【答案】3或4;6n-3
【解析】
分類(lèi)歸納(圖形的變化類(lèi)),點(diǎn)的坐標(biāo),矩形的性質(zhì)。
根據(jù)題意畫(huà)出圖形,再找出點(diǎn)B的橫坐標(biāo)與△AOB內(nèi)部(不包括邊界)的整點(diǎn)m之間的關(guān)系即可求出答案:
如圖:當(dāng)點(diǎn)B在(3,0)點(diǎn)或(4,0)點(diǎn)時(shí),△AOB內(nèi)部(不包括邊界)的整點(diǎn)為(1,1),
(1,2),(2,1),共三個(gè)點(diǎn),∴當(dāng)m=3時(shí),點(diǎn)B的橫坐標(biāo)的所有可能值是3或4。
當(dāng)點(diǎn)B的橫坐標(biāo)為4n(n為正整數(shù))時(shí),
∵以OB為長(zhǎng)OA為寬的矩形內(nèi)(不包括邊界)的整點(diǎn)個(gè)數(shù)為(4n-1)×3="12" n-3,對(duì)角線AB上的整點(diǎn)個(gè)數(shù)總為3,
∴△AOB內(nèi)部(不包括邊界)的整點(diǎn)個(gè)數(shù)m=(12 n-3-3)÷2=6n-3。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB=4,C是⊙O上一點(diǎn),連接OC.過(guò)點(diǎn)C作CD⊥AB,垂足為D,過(guò)點(diǎn)B作BM∥OC,在射線BM上取點(diǎn)E,使BE=BD,連接CE.
(1)當(dāng)∠COB=60°時(shí),直接寫(xiě)出陰影部分的面積;
(2)求證:CE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,角ACB=90°,P是線段BC上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合)連接AP,延長(zhǎng)BC至點(diǎn)Q,使 CQ=CP,過(guò)點(diǎn)Q作QH⊥AP于點(diǎn)H,交AB于點(diǎn)M.
(1)∠APC=α,求∠AMQ的大。ㄓ煤恋氖阶颖硎荆;
(2)在(1)的條件下,過(guò)點(diǎn)M作ME⊥QB于點(diǎn)E,試證明 PC 與 ME 之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到(點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對(duì)應(yīng)點(diǎn)),連接CC′,則∠CC′B′的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值.
(1)(2x2y-4xy2)-(-xy2+x2y),其中x=-1,y=2;
(2)2x2-[3(-x2+xy)-2y2]-2(x2-xy+2y2),其中x,y滿(mǎn)足|x-|+(y+1)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠C=90°,D是AC的中點(diǎn),E是AB的中點(diǎn),作EF⊥BC于F,延長(zhǎng)BC至G,使CG=BF,連接CE、DE、DG.
(1)如圖1,求證:四邊形CEDG是平行四邊形 ;
(2)如圖2,連接EG交AC于點(diǎn)H,若EG⊥AB,請(qǐng)直接寫(xiě)出圖2中所有長(zhǎng)度等于 GH的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解決中小學(xué)大班額問(wèn)題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類(lèi)學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類(lèi)學(xué)校和3所B類(lèi)學(xué)校共需資金7800萬(wàn)元,改擴(kuò)建3所A類(lèi)學(xué)校和1所B類(lèi)學(xué)校共需資金5400萬(wàn)元.
(1)改擴(kuò)建1所A類(lèi)學(xué)校和1所B類(lèi)學(xué)校所需資金分別是多少萬(wàn)元?
(2)該縣計(jì)劃改擴(kuò)建A、B兩類(lèi)學(xué)校共10所,改擴(kuò)建資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若國(guó)家財(cái)政撥付資金不超過(guò)11800萬(wàn)元;地方財(cái)政投入資金不少于4000萬(wàn)元,其中地方財(cái)政投入到A、B兩類(lèi)學(xué)校的改擴(kuò)建資金分別為每所300萬(wàn)元和500萬(wàn)元.請(qǐng)問(wèn)共有哪幾種改擴(kuò)建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABDC中,∠ABC的平分線交AD于點(diǎn)E,過(guò)點(diǎn)A作BE的垂線交BE于點(diǎn)F,交BC于點(diǎn)G,連接EG,CF.
(1)求證:四邊形AEGE是菱形;
(2)若∠ABC=60°,AB=4,AD=5,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com