【題目】拋物線y=ax2+c與x軸交于A、B兩點(A在B的左邊),與y軸交于點C,拋物線上有一動點P

(1)若A(﹣2,0),C(0,﹣4)

①求拋物線的解析式;

②在①的情況下,若點P在第四象限運動,點D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.

(2)若點P在第一象限運動,且a<0,連接AP、BP分別交y軸于點E、F,則問 是否與a,c有關?若有關,用a,c表示該比值;若無關,求出該比值.

【答案】(1)①拋物線解析式為y=x2﹣4;②0<S四邊形BDQP;(2)的值與a,c無關,比值為1.

【解析】試題分析:(1)①把 A(-2,0),C0,-4)代入,求得a、c的值,即可得拋物線的解析式;②連接DB、OP,設P, ),因A(-2,0),對稱軸為軸,可得B2,0),即可得 ,再由點P在第四象限運動,可得x單位取值范圍,由拋物線的圖象即可得BDP的取值范圍為,因 即可得平行四邊形BDQP面積的取值范圍為;(2)過點PPGAB,設A0),B,0),P, ),由PG軸,根據(jù)相似三角形的判定方法可得 , ,再由相似三角形的性質(zhì)可得 , ,代入數(shù)值可得 , ,把這兩個式子相加可得,令,即可得, ,所以,即 ,所以,即可得

所以可得結(jié)論、無關,比值為1.

試題解析:

(1)①

②連接DB、OP,設P(,

∵A(-2,0),對稱軸為

∴B(2,0)

∵點P在第四象限運動

∴由拋物線的圖象可得:

(2)過點P作PG⊥AB,設A(,0),B(,0),P(,

∴PG∥

,

,

,

∵當時,∴,即,

、無關,比值為1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,BF、DE相交于點A,BG交BF于點B,交AC于點C.
(1)指出ED、BC被BF所截的同位角,內(nèi)錯角,同旁內(nèi)角;
(2)指出ED、BC被AC所截的內(nèi)錯角,同旁內(nèi)角;
(3)指出FB、BC被AC所截的內(nèi)錯角,同旁內(nèi)角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備設計一款女生校服,對全校女生喜歡的顏色進行了問卷調(diào)查,統(tǒng)計如下表所示:

顏色

黃色

綠色

白色

紫色

紅色

學生人數(shù)

100

180

220

80

750

學校決定采用紅色,可用來解釋這一現(xiàn)象的統(tǒng)計知識是( 。

A. 平均 B. 中位數(shù) C. 眾數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面各組數(shù)中,相等的一組是(
A.﹣22與(﹣2)2
B. ?與( 3??
C.﹣|﹣2|與﹣(﹣2)
D.(﹣3)3與﹣33

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=﹣(x+3)2+2圖象的開口方向、對稱軸和頂點坐標分別為(
A.向下,x=3,(3,2)
B.向下,x=﹣3,(3,2)
C.向上,x=﹣3,(3,2)
D.向下,x=﹣3,(﹣3,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=mxm-1+(m-1)是一次函數(shù),則( )

A. m≠0 B. m=2 C. m=24 D. m>2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△abc的三個頂點的坐標分別為A(﹣6,4),B(﹣4,0),C(﹣2,2).
(1)將△ABC向右平移5個單位得,得△A1B1C1 , 畫出圖形,并直接寫出點A1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,得△A2B2C2 , 畫出圖形,并直接寫出點B2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二元一次方程3x﹣y=1的解的情況是(
A.有且只有一個解
B.有無數(shù)個解
C.無解
D.有且只有兩個解

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=x2﹣2x﹣3的圖象與x軸交點的坐標是 , y軸的交點坐標是 , 頂點坐標是

查看答案和解析>>

同步練習冊答案