【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點).
(1)將△ABC繞點B順時針旋轉(zhuǎn)90°得到△A′BC′,請畫出△A′BC′.
(2)求BA邊旋轉(zhuǎn)到BA′位置時所掃過圖形的面積.

【答案】
(1)解:如圖所示:△A′BC′即為所求,


(2)解:∵AB= = ,

∴BA邊旋轉(zhuǎn)到BA″位置時所掃過圖形的面積為: =


【解析】此題考查的作旋轉(zhuǎn)對稱圖形及扇形的面積的計算. 關(guān)鍵掌握旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心,旋轉(zhuǎn)方向,旋轉(zhuǎn)角度. 熟記扇形面積公式.
【考點精析】通過靈活運用扇形面積計算公式,掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AC∥DFC、E分別在ABDF上,小華想知道∠ACE∠DEC是否互補(bǔ),但是他有沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連結(jié)CF,再找出CF的中點O,然后連結(jié)EO并延長EO和直線AB相交于點B,經(jīng)過測量,他發(fā)現(xiàn)EOBO,因此他得出結(jié)論:∠ACE∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BCEF

以下是他的想法,請你填上根據(jù).小華是這樣想的:

因為CFBE相交于點O,

根據(jù) 得出∠COB∠EOF;

OCF的中點,那么COFO,又已知 EOBO,

根據(jù) 得出△COB≌△FOE,

根據(jù) 得出BCEF,

根據(jù) 得出∠BCO∠F

既然∠BCO∠F,根據(jù) AB∥DF

既然AB∥DF,根據(jù) 得出∠ACE∠DEC互補(bǔ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程x2+2mx+m2﹣1=0
(1)不解方程,判別方程根的情況;
(2)若方程有一個根為3,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個安裝有進(jìn)出水管的30升容器,水管單位時間內(nèi)進(jìn)出的水量是一定的,設(shè)從某時刻開始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,得到水量y(升)與時間x(分)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信思給出下列說法,其中錯誤的是(  )

A. 每分鐘進(jìn)水5

B. 每分鐘放水1.25

C. 12分鐘后只放水,不進(jìn)水,還要8分鐘可以把水放完

D. 若從一開始進(jìn)出水管同時打開需要24分鐘可以將容器灌滿

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊華與季紅用5張同樣規(guī)格的硬紙片做拼圖游戲,正面如圖1所示,背面完全一樣,將它們背面朝上攪勻后,同時抽出兩張.規(guī)則如下:當(dāng)兩張硬紙片上的圖形可拼成電燈或小人時,楊華得1分;當(dāng)兩張硬紙片上的圖形可拼成房子或小山時,季紅得1分(如圖2).問題:游戲規(guī)則對雙方公平嗎?請說明理由;若你認(rèn)為不公平,如何修改游戲規(guī)則才能使游戲?qū)﹄p方公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點DAB上,點EBC上,BDBE

1)請你再添加一個條件,使得△BEA≌△BDC,并給出證明.你添加的條件是   

2)根據(jù)你添加的條件,再寫出圖中的一對全等三角形   .(只要求寫出一對全等三角形,不再添加其他線段,不再標(biāo)注或使用其他字母,不必寫出證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過原點,與x軸的另一個交點為(2,0),將拋物線C1向右平移m(m>0)個單位得到拋物線C2 , C2交x軸于A,B兩點(點A在點B的左邊),交y軸于點C.
(1)求拋物線C1的解析式及頂點坐標(biāo);
(2)以AC為斜邊向上作等腰直角三角形ACD,當(dāng)點D落在拋物線C2的對稱軸上時,求拋物線C2的解析式;
(3)若拋物線C2的對稱軸存在點P,使△ PAC為等邊三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點A為圓心,對角線AC的長為半徑作弧交數(shù)軸的正半軸于M,則點M的表示的數(shù)為________________

【答案】

【解析】ACAM∴AM

型】填空
結(jié)束】
11

【題目】ABC中,AB10,AC2,BC邊上的高AD6,則另一邊BC等于_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實數(shù)a,b,定義運算“*”:a*b=a2-ab(a≤b); a*b=b2-ab(a>b),關(guān)于x的方程(2x-1)*(x-1)=m 恰好有三個不相等的實數(shù)根,則m的取值范圍是( )
A.m>
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案