【題目】某校七年級(jí)有400名學(xué)生,其中2004年出生的有8人,2005年出生的有292人,2006年出生的有75人,其余的為2007年出生.

1)該年級(jí)至少有兩人同月同日生,這是一個(gè)   事件(填必然不可能隨機(jī));

2)從這400名學(xué)生中隨機(jī)選一人,選到2007年出生的概率是多少?

【答案】1)必然;(2)選到2007年出生的概率是

【解析】

1)根據(jù)事件發(fā)生的可能性進(jìn)行判斷,即可得到答案;

2)先求出2007年出生的學(xué)生數(shù),然后根據(jù)概率公式進(jìn)行計(jì)算即可得到答案.

1)根據(jù)題意,該年級(jí)至少有兩人同月同日生,這是一個(gè)必然事件,

故答案為必然;

2)2007年出生的學(xué)生有400-8-292-75=25人,

所以P(選到2007年出生)=,

答:選到2007年出生的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,已知∠AOD=120°,AC=16,則圖中長(zhǎng)度為8的線段有( 。

A. 2 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是由49個(gè)邊長(zhǎng)為1的小正方形組成的7×7的正方形網(wǎng)格,小正方形的頂點(diǎn)為格點(diǎn),點(diǎn)、、均在格點(diǎn)上.

1)直接寫出________;

2)點(diǎn)在網(wǎng)格中的格點(diǎn)上,且是以為頂角頂點(diǎn)的等腰三角形,則滿足條件的點(diǎn)________個(gè);

3)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,借助矩形和無(wú)刻度的直尺作出的角平分線,并保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC≌△DBE,點(diǎn)D在邊AC,BCDE交于點(diǎn)P.已知, ,,.

(1)求∠CBE的度數(shù).

(2)求△CDP與△BEP的周長(zhǎng)和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=90°,點(diǎn)A、B分別在OM、ON上運(yùn)動(dòng)(不與點(diǎn)O重合).

(1)如圖①,BC是∠ABN的平分線,BC的反方向延長(zhǎng)線與∠BAO的平分線交于點(diǎn)D.

①若∠BAO=60°,則∠D的大小為 度,

②猜想:∠D的度數(shù)是否隨AB的移動(dòng)發(fā)生變化?請(qǐng)說(shuō)明理由.

(2)如圖②,若∠ABC=ABN, BAD=BAO,則∠D的大小為 度,若∠ABC=ABN, BAD=BAO,則∠D的大小為 度(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下說(shuō)法合理的是( )

A. 小明在10次拋圖釘?shù)脑囼?yàn)中發(fā)現(xiàn)3次釘尖朝上,由此他說(shuō)釘尖朝上的概率是30%

B. 拋擲一枚普通的正六面體骰子,出現(xiàn)6的概率是的意思是每6次就有1次擲得6

C. 某彩票的中獎(jiǎng)機(jī)會(huì)是2%,那么如果買100張彩票一定會(huì)有2張中獎(jiǎng)。

D. 在一次課堂進(jìn)行的試驗(yàn)中,甲、乙兩組同學(xué)估計(jì)硬幣落地后,正面朝上的概率分別為048051

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y=在同一坐標(biāo)系內(nèi)的圖象大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(7分)如圖,EF//AD, .求證:∠DGA+∠BAC=180°.請(qǐng)將說(shuō)明過(guò)程填寫完成.

證明:∵EF//AD,(已知)

_____(_____________________________).

又∵______

________________________).

∴AB//______(____________________________)

∴∠DGA+∠BAC=180°(_____________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

學(xué)習(xí)了無(wú)理數(shù)、二次根式及完全平方公式后,某數(shù)學(xué)興趣小組開展了一次探究活動(dòng):

估算的近似值.

小明的方法:

,

設(shè)0k1),

,

,

解得,

1)請(qǐng)你用小明的方法估算的近似值(結(jié)果保留兩位小數(shù));

2)請(qǐng)你結(jié)合上述實(shí)例,概括出估算的公式:已知非負(fù)整數(shù)a,bm,若,且,則=_____________(用含a,b的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案