【題目】如圖,在矩形ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)O,已知∠AOD=120°,AC=16,則圖中長(zhǎng)度為8的線(xiàn)段有( 。

A. 2 B. 4 C. 5 D. 6

【答案】D

【解析】

根據(jù)矩形性質(zhì)得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,再證得△ABO是等邊三角形,推出AB=AO=8=DC,由此即可解答

∵AC=16,四邊形ABCD是矩形,

∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,

∴BO=OD=AO=OC=8,

∵∠AOD=120°,

∴∠AOB=60°,

∴△ABO是等邊三角形,

∴AB=AO=8,

∴DC=8,

即圖中長(zhǎng)度為8的線(xiàn)段有AO、CO、BO、DO、AB、DC6條,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,1=2,PBN上一點(diǎn),PDBC于點(diǎn)D,AB+BC=2BD.試說(shuō)明:BAP+BCP=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會(huì)對(duì)空氣污染問(wèn)題越來(lái)越重視,空氣凈化器的銷(xiāo)量也大增,商社電器從廠(chǎng)家購(gòu)進(jìn)了A,B兩種型號(hào)的空氣凈化器,已知一臺(tái)A型空氣凈化器的進(jìn)價(jià)比一臺(tái)B型空氣凈化器的進(jìn)價(jià)多300元,用7500元購(gòu)進(jìn)A型空氣凈化器和用6000元購(gòu)進(jìn)B型空氣凈化器的臺(tái)數(shù)相同.
(1)求一臺(tái)A型空氣凈化器和一臺(tái)B型空氣凈化器的進(jìn)價(jià)各為多少元?
(2)在銷(xiāo)售過(guò)程中,A型空氣凈化器因?yàn)閮艋芰?qiáng),噪音小而更受消費(fèi)者的歡迎.為了增大B型空氣凈化器的銷(xiāo)量,商社電器決定對(duì)B型空氣凈化器進(jìn)行降價(jià)銷(xiāo)售,經(jīng)市場(chǎng)調(diào)查,當(dāng)B型空氣凈化器的售價(jià)為1800元時(shí),每天可賣(mài)出4臺(tái),在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺(tái),如果每天商社電器銷(xiāo)售B型空氣凈化器的利潤(rùn)為3200元,請(qǐng)問(wèn)商社電器應(yīng)將B型空氣凈化器的售價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD,點(diǎn)EAB的中點(diǎn),BF=BC.

(1)如圖1,求證:DEEF.

(2)如圖2,若點(diǎn)GBC上,且CD=3CG,DG、EF交于H點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,長(zhǎng)方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),長(zhǎng)方形OABC的面積為12,OC邊長(zhǎng)為3.

(1)數(shù)軸上點(diǎn)A表示的數(shù)為________

(2)將長(zhǎng)方形OABC沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的長(zhǎng)方形記為O′A′B′C′,移動(dòng)后的長(zhǎng)方形O′A′B′C′與原長(zhǎng)方形OABC重疊部分(如圖2中陰影部分)的面積記為S.

①當(dāng)S恰好等于原長(zhǎng)方形OABC面積的一半時(shí),數(shù)軸上點(diǎn)A′表示的數(shù)是多少?

  ②設(shè)點(diǎn)A的移動(dòng)距離AA′x.

  ()當(dāng)S4時(shí),求x的值;

  )D為線(xiàn)段AA′的中點(diǎn),點(diǎn)E在線(xiàn)段OO′上,且OEOO′,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn),連接PM,PN,則下列結(jié)論:①PM=PN;② ;③△PMN為等邊三角形;④當(dāng)∠ABC=45°時(shí),BN= PC.其中正確的個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)前正值櫻桃銷(xiāo)售季節(jié),小李用20000元在櫻桃基地購(gòu)進(jìn)櫻桃若干進(jìn)行銷(xiāo)售,由于銷(xiāo)售狀況良好,他又立即拿出60000元資金購(gòu)進(jìn)該種櫻桃,但這次的進(jìn)貨價(jià)比第一次的進(jìn)貨價(jià)提高了20%,購(gòu)進(jìn)櫻桃數(shù)量是第一次的2倍還多200千克.
(1)該種櫻桃的第一次進(jìn)價(jià)是每千克多少元?
(2)如果小李按每千克90元的價(jià)格出售,當(dāng)大部分櫻桃售出后,余下500千克按售價(jià)的7折出售完,小李銷(xiāo)售這種櫻桃共盈利多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論: ①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大.
其中正確的結(jié)論有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,8),B(﹣4,0),線(xiàn)段AB的垂直平分線(xiàn)CD分別交AB、OA于點(diǎn)C、D,其中點(diǎn)D的坐標(biāo)為(0,3).

(1)求直線(xiàn)AB的解析式;

(2)求線(xiàn)段CD的長(zhǎng);

(3)點(diǎn)Ey軸上一個(gè)動(dòng)點(diǎn),當(dāng)CDE為等腰三角形時(shí),求E點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案