【題目】如圖1, 在 中,,.點OBC的中點,點D沿BAC方向從B運動到C.設(shè)點D經(jīng)過的路徑長為,圖1中某條線段的長為y,若表示yx的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是圖1中的 ( )

圖1 圖2

A. B. C. D.

【答案】B

【解析】

根據(jù)圖象,結(jié)合等腰三角形的性質(zhì),分點當(dāng)點DAB上,當(dāng)點DAC上以及勾股定理分析得出答案即可.

當(dāng)點DAB上,則線段BD表示為y=x,線段AD表示為y=ABx為一次函數(shù),不符合圖象;

同理當(dāng)點DAC上,也為為一次函數(shù),不符合圖象;

如圖,

OEAB,

∵點OBC中點,設(shè)AB=AC=a,BAC=120°.

AO=,BO=a,OE=a,BE=a,

設(shè)BD=x,OD=y,AB=AC=a,

DE=ax,

RtODE中,

DE2+OE2=OD2,

y2=(ax)2+(a)2

整理得:y2=x2ax+a2

當(dāng)0<xa,y2=x2ax+a2,函數(shù)的圖象呈拋物線并開口向上,

由此得出這條線段可能是圖1中的OD.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為執(zhí)行“兩免一補”政策,某地區(qū)2014年投入教育經(jīng)費2500萬元,預(yù)計到2016年,三年共投入8275萬元.設(shè)投入教育經(jīng)費的年平均增長率為x,那么下列方程正確的是( )

A. 2500x28275 B. 2500(1+x%)28275

C. 2500(1+x)28275 D. 2500+2500(1+x)+2500(1+x)28275

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD在直角坐標(biāo)系中的位置如圖所示,其中邊AD和邊BC都與x軸平行,AB和邊CD都與y軸平行,D(2,3,C的縱坐標(biāo)是-1,反比例函數(shù)y=(k≠0)的圖像過點C,與邊AB交于點E.

(1)求直線OD的表達式和此反比例函數(shù)的解析式:

(2)如果點By軸的距離是4,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,2BD=3DC,EAC的中點,如SABC=10,則SADE=( )

A.5B.4 C.3 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°CDAB于點D,點E,F分別是BCAC的中點.

(1)求證:DFDE.

(2)AC=8,BC=6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在等邊△ABC中, AB=D,E分別是ABBC的中點(如圖1).若將△BDE繞點B逆時針旋轉(zhuǎn),得到△BD1E1,設(shè)旋轉(zhuǎn)角為α(0°<α<180°),記射線CE1AD1的交點為P

(1)判斷△BDE的形狀;

(2)在圖2中補全圖形,

①猜想在旋轉(zhuǎn)過程中,線段CE1AD1的數(shù)量關(guān)系并證明;

②求∠APC的度數(shù);

(3)點PBC所在直線的距離的最大值為________.(直接填寫結(jié)果)

、

圖2 備用

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家以AB兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙兩種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含1.5千克A原料、1.5千克B原料;乙產(chǎn)品每袋含2千克A原料、1千克B原料.甲、乙兩種產(chǎn)品每袋的成本價分別為袋中兩種原料的成本價之和.若甲產(chǎn)品每袋售價72元,則利潤率為20%.某節(jié)慶日,廠家準(zhǔn)備生產(chǎn)若干袋甲產(chǎn)品和乙產(chǎn)品,甲產(chǎn)品和乙產(chǎn)品的數(shù)量和不超過100袋,會計在核算成本的時候把A原料和B原料的單價看反了,后面發(fā)現(xiàn)如果不看反,那么實際成本比核算時的成本少500元,那么廠家在生產(chǎn)甲乙兩種產(chǎn)品時實際成本最多為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC

⑴求∠ECD的度數(shù);

⑵若CE=5,求CB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出5件。若商場平均每天要盈利1600元,每件襯衫應(yīng)降價多少元?

查看答案和解析>>

同步練習(xí)冊答案