【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m.
(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫(xiě)出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由;
(3)若球一定能越過(guò)球網(wǎng),又不出邊界,求h的取值范圍.
【答案】
(1)解:∵h(yuǎn)=2.6,球從O點(diǎn)正上方2m的A處發(fā)出,
∴拋物線y=a(x﹣6)2+h過(guò)點(diǎn)(0,2),
∴2=a(0﹣6)2+2.6,
解得:a=﹣ ,
故y與x的關(guān)系式為:y=﹣ (x﹣6)2+2.6
(2)解:當(dāng)x=9時(shí),y=﹣ (x﹣6)2+2.6=2.45>2.43,
所以球能過(guò)球網(wǎng);
當(dāng)y=0時(shí), ,
解得:x1=6+2 >18,x2=6﹣2 (舍去)
故會(huì)出界
(3)解:當(dāng)球正好過(guò)點(diǎn)(18,0)時(shí),拋物線y=a(x﹣6)2+h還過(guò)點(diǎn)(0,2),代入解析式得:
,
解得: ,
此時(shí)二次函數(shù)解析式為:y=﹣ (x﹣6)2+ ,
此時(shí)球若不出邊界h≥ ,
當(dāng)球剛能過(guò)網(wǎng),此時(shí)函數(shù)解析式過(guò)(9,2.43),拋物線y=a(x﹣6)2+h還過(guò)點(diǎn)(0,2),代入解析式得:
,
解得: ,
此時(shí)球要過(guò)網(wǎng)h≥ ,
故若球一定能越過(guò)球網(wǎng),又不出邊界,h的取值范圍是:h≥
【解析】(1)用待定系數(shù)法把A(0,2)代入解析式即可求出;(2)能否越過(guò)網(wǎng),會(huì)不會(huì)越界,須比較x=9時(shí)的高度與2.43比較,y=0時(shí)求出的x值與18比較;(3)借鑒(2)的思路與方法,計(jì)算出(18,0)與(9,2.43)分別對(duì)應(yīng)的h值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,OB=OD,BF=DE,AE∥CF.
(1)求證:△OAE≌△OCF;
(2)若OA=OD,猜想:四邊形ABCD的形狀,請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A和動(dòng)點(diǎn)P在直線l上,點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為Q,以AQ為邊作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圓O.點(diǎn)C在點(diǎn)P右側(cè),PC=4,過(guò)點(diǎn)C作直線m⊥l,過(guò)點(diǎn)O作OD⊥m于點(diǎn)D,交AB右側(cè)的圓弧于點(diǎn)E.在射線CD上取點(diǎn)F,使DF= CD,以DE,DF為鄰邊作矩形DEGF.設(shè)AQ=3x.
(1)用關(guān)于x的代數(shù)式表示BQ,DF.
(2)當(dāng)點(diǎn)P在點(diǎn)A右側(cè)時(shí),若矩形DEGF的面積等于90,求AP的長(zhǎng).
(3)在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中,
①當(dāng)AP為何值時(shí),矩形DEGF是正方形?
②作直線BG交⊙O于點(diǎn)N,若BN的弦心距為1,求AP的長(zhǎng)(直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一勞動(dòng)節(jié)大酬賓!”,某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客至多可得到元購(gòu)物券;
(2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中.
(1)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A1B1C1,畫(huà)出△A1B1C1,并寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C是線段AB上的一點(diǎn),分別以AC.BC為邊在AB的同側(cè)作正方形ACDE和正方形CBFG,連接EG.BG.BE,當(dāng)BC=1時(shí),△BEG的面積記為S1,當(dāng)BC=2時(shí),△BEG的面積記為S2,……,以此類推,當(dāng)BC=n時(shí),△BEG的面積記為Sn,則S2020-S2019的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=4,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)G,H分別是邊CD,AB上的動(dòng)點(diǎn),連接GH交AE于F,且使GH⊥AE,連接AG,EH,則EH+AG的最小值是( )
A.8
B.4
C.2
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,、的交點(diǎn)為,現(xiàn)作如下操作:
第一次操作,分別作和的平分線,交點(diǎn)為,
第二次操作,分別作和的平分線,交點(diǎn)為,
第三次操作,分別作和的平分線,交點(diǎn)為,
…
第次操作,分別作和的平分線,交點(diǎn)為.
若度,那等于__________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的二次函數(shù) 的圖象中,觀察得出了下面五條信息:
① ;② ;③ ;④ ;⑤ ,
你認(rèn)為其中正確信息的個(gè)數(shù)有個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com