已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2
;
(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長(zhǎng).精英家教網(wǎng)
分析:(1)要證明AD是圓O的切線,只要證明∠BDA=90°即可;
(2)連接PD、PO,根據(jù)直徑上的圓周角是直角可得PD∥AC,所以得△PBD是等腰三角形,則OD=
1
2
BD,又由已知得OD=
1
2
BD=
1
2
DC,由平行線分線段成比例得
PE
CE
=
1
2

(3)連接OP,根據(jù)三角函數(shù)可求得PC,CD的長(zhǎng),再在RT△ADE中利用三角函數(shù)求得DE的長(zhǎng),進(jìn)而得出AD的長(zhǎng).
解答:精英家教網(wǎng)(1)證明:∵AB=AC,點(diǎn)D是邊BC的中點(diǎn),
∴AD⊥BD.
又∵BD是圓O直徑,
∴AD是圓O的切線.

(2)證明:連接PD、PO,
∴PD∥AC,
已知△ABC中,AB=AC,∴BD=DC,
∴PB=PD,
∴OD=OB=
1
2
BD=
1
2
DC,
∴PE=
1
2
CE,
PE
CE
=
1
2
;

(3)解:連接OP,
由BC=8,得CD=4,OC=6,OP=2,
∵PC是圓O的切線,O為圓心,
∴∠OPC=90°.∴由勾股定理,得PC=4
2
,
在△OPC中,tan∠OCP=
OP
CP
=
2
4
,
在△DEC中,tan∠DCE=
DE
DC
=
2
4
,DE=DC•
2
4
=
2

∵E為AD中點(diǎn),
∴AD=2
2
點(diǎn)評(píng):此題考查學(xué)生對(duì)切線的判定及綜合解直角三角形的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

本題為選項(xiàng)做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
精英家教網(wǎng)
甲:直線l:y=(m-3)x+n-2(m,n為常數(shù))的圖象如圖1所示,化簡(jiǎn):|m-n|-
n24n+4
-|m-1|

乙:已知:如圖2,在邊長(zhǎng)為a的正方形ABCD中,M是邊AD的中點(diǎn),能否在邊AB上找到點(diǎn)N(不含A、B),使得△MAN相似?若能,請(qǐng)給出證明;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•錫山區(qū)一模)已知:如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線y=kx+b與x軸、y軸分別交于點(diǎn)A、B,與雙曲線y=
m
x
相交于C、D兩點(diǎn),且點(diǎn)D的坐標(biāo)為(1,6).
(1)當(dāng)點(diǎn)C的橫坐標(biāo)為2時(shí),試求直線AB的解析式,并直接寫(xiě)出
CD
AB
的值為
1
3
1
3

(2)如圖2,當(dāng)點(diǎn)A落在x 軸的負(fù)半軸時(shí),過(guò)點(diǎn)C作x軸的垂線,垂足為E,過(guò)點(diǎn)D作y軸的垂線,垂足為F,連接EF.
①判斷△EFC的面積和△EFD的面積是否相等,并說(shuō)明理由;
②當(dāng)
CD
AB
=2時(shí),求tan∠OAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•響水縣一模)探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系呢?

已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個(gè)外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.
探究二:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF(圖4)呢?
請(qǐng)直接寫(xiě)出∠P與∠A+∠B+∠E+∠F的數(shù)量關(guān)系:
∠P=
1
2
(∠A+∠B+∠E+∠F)-180°
∠P=
1
2
(∠A+∠B+∠E+∠F)-180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)已知:如圖1,在梯形ABCD中,AD∥BC,∠A=90°,AD=6,AB=8,sinC=
45
,點(diǎn)P在射線DC上,點(diǎn)Q在射線AB上,且PQ⊥CD,設(shè)DP=x,BQ=y.
(1)求證:點(diǎn)D在線段BC的垂直平分線上;
(2)如圖2,當(dāng)點(diǎn)P在線段DC上,且點(diǎn)Q在線段AB上時(shí),求y關(guān)于x的函數(shù)解析式,并寫(xiě)出定義域;
(3)若以點(diǎn)B為圓心、BQ為半徑的⊙B與以點(diǎn)C為圓心、CP為半徑的⊙C相切,求線段DP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,在△ABC中,D、F分別是AB、CA上的兩個(gè)定點(diǎn),在BC上找一點(diǎn)E,使△DEF的周長(zhǎng)最小,請(qǐng)作出相應(yīng)圖形并寫(xiě)出作法;
(2)已知:如圖2,在△ABC中,若在上一題的條件改為D是AB上一定點(diǎn),在BC、CA、上分別找一點(diǎn)E、F使△DEF的周長(zhǎng)最小,請(qǐng)作出相應(yīng)圖形并寫(xiě)出作法;
(3)已知:如圖3,在△ABC中,是否存在D、E、F分別在AB、BC、CA,且△DEF的周長(zhǎng)最?若存在請(qǐng)作出相應(yīng)圖形并寫(xiě)出作法;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案