【題目】請完成下面的幾何探究過程:

(1)觀察填空

如圖1,在RtABC中,∠C=90°,AC=BC=4,點D為斜邊AB上一動點(不與點A,B重合),把線段CD繞點C順時針旋轉90°得到線段CE,連DEBE,則

①∠CBE的度數(shù)為____________;

②當BE=____________時,四邊形CDBE為正方形.

(2)探究證明

如圖2,在RtABC中,∠C=90°,BC=2AC=4,點D為斜邊AB上一動點(不與點A,B重合),把線段CD繞點C順時針旋轉90°后并延長為原來的兩倍得到線段CE,連DE,BE則:

①在點D的運動過程中,請判斷∠CBE與∠A的大小關系,并證明;

②當CDAB時,求證:四邊形CDBE為矩形

(3)拓展延伸

如圖2,在點D的運動過程中,若△BCD恰好為等腰三角形,請直接寫出此時AD的長.

【答案】1)①45°,②;(2)①,理由見解析,②見解析;(3

【解析】

1由等腰直角三角形的性質得出,由旋轉的性質得:,,證明,即可得出結果;

,求出,作,則是等腰直角三角形,證出是等腰直角三角形,求出,證出四邊形是矩形,再由垂直平分線的性質得出,即可得出結論;

2證明,即可得出;

由垂直的定義得出,由相似三角形的性質得出,即可得出結論;

3)存在兩種情況:時,證出,由勾股定理求出,即可得出結果;

時,得出即可.

解:(1,,

由旋轉的性質得:,

中,,

,

;

故答案為:;

時,四邊形是正方形;理由如下:

得:,

,如圖所示:

是等腰直角三角形,

,

,

是等腰直角三角形,

,

,

四邊形是矩形,

垂直平分,

,

四邊形是正方形;

故答案為:;

2,理由如下:

由旋轉的性質得:

,

,

,

;

,

得:,

,

四邊形是矩形;

3)在點的運動過程中,若恰好為等腰三角形,存在兩種情況:

時,則,

,

,

,

,

,

,

;

時,;

綜上所述:若恰好為等腰三角形,此時的長為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在矩形中,,是對角線,點在線段上,連結,將沿翻折,使得點的對應點恰好落在上,點在射線上,連接,將沿翻折,使得點的對應點恰好落在所在直線,則線段的長度為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次課題學習中,老師讓同學們合作編題,某學習小組受趙爽弦圖的啟發(fā),編寫了下面這道題,請你來解一解:如圖,將平行四邊形ABCD的四邊DA、AB、BC、CD分別延長至E、F、GH,使得AECG,BFDH,連接EF,FG,GH,HE.求證:四邊形EFGH為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為研究學生的課余愛好情況,采取抽樣調查的方法,從閱讀、運動、娛樂、上網(wǎng)等四個方面調查了若干學生的興趣愛好;并將調查的結果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

1)在這次研究中,一共調查了______名學生;若該校共有1500名學生,估計全校愛好運動的學生共有______名;

2)補全條形統(tǒng)計圖,并計算閱讀部分圓心角是______度;

3)若該校九年級愛好閱讀的學生有150人,估計九年級有多少學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)3(2x+1)2=108

(2)3x(x1)=22x

(3)x26x+9=(52x)2

(4)x(2x4)=58x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,的中點,將沿翻折得到,延長,,垂足為,連接、.結論:;②;③;④;⑤.其中的正確的個數(shù)是(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD,AB=6,BC=8.P在矩形ABCD的內部,點E在邊BC滿足PBE∽△DBC,APD是等腰三角形,PE的長為數(shù)___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線與軸交于兩點,與軸交于點,點的坐標為,點的坐標為,拋物線的對稱軸是直線.

1)求拋物線對應的函數(shù)表達式;

2是線段上的任意一點,當為等腰三角形時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】4張相同的卡片分別寫有數(shù)字﹣1、﹣3、46,將這些卡片的背面朝上,并洗勻.

1)從中任意抽取1張,抽到的數(shù)字大于0的概率是______;

2)從中任意抽取1張,并將卡片上的數(shù)字記作二次函數(shù)yax2+bx中的a,再從余下的卡片中任意抽取1張,并將卡片上的數(shù)字記作二次函數(shù)yax2+bx中的b,利用樹狀圖或表格的方法,求出這個二次函數(shù)圖象的對稱軸在y軸右側的概率.

查看答案和解析>>

同步練習冊答案