【題目】如圖,AB是⊙O的弦,過AB的中點E作EC⊥OA于C,過點B作⊙O的切線BD交CE的延長線于點D.
(1)求證:DB=DE;
(2)連接AD,若AB=24,DB=10,求四邊形OADB的面積.
【答案】(1)證明見解析;(2)四邊形OADB的面積為
【解析】
(1)欲證明DB=DE,只要證明∠DEB=∠DBE;
(2)作DF⊥AB于F,連接OE.只要證明∠AOE=∠DEF,可得sin∠DEF=sin∠AOE=由此求出AO的長,由勾股定理可求OE的長即可解決問題.
證明:(1)∵AO=OB,
∴∠OAB=∠OBA,
∵BD是切線,
∴OB⊥BD,
∴∠OBD=90°,
∴∠OBE+∠EBD=90°,
∵EC⊥OA,
∴∠CAE+∠CEA=90°,
∵∠CEA=∠DEB,
∴∠EBD=∠BED,
∴DB=DE.
(2)作DF⊥AB于F,連接OE.
∵DB=DE,AE=EB=12,
∴EF=BE=6,OE⊥AB,
在Rt△EDF中,DE=BD=10,EF=6,
∴DF=
∵∠AOE+∠OAB=90°,∠DEF+∠OAB=90°,
∴∠AOE=∠DEF,
∴sin∠DEF=sin∠AOE=
∵AE=12, ∴AO=15
∴OE=
∴四邊形OADB的面積=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,某超市從底樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的長度是12.5米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角∠CAQ為45°,坡角∠BAQ為37°,求二樓的層高BC(精確到0.1米).(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人民生活水平的提高和環(huán)境的不斷改善,帶動了旅游業(yè)的發(fā)展.某市旅游景區(qū)有A,B,C,D四個著名景點,該市旅游部門統(tǒng)計繪制出2019年游客去各景點情況統(tǒng)計圖,根據(jù)給出的信息解答下列問題:
(1)2019年該市旅游景區(qū)共接待游客 萬人,扇形統(tǒng)計圖中C景點所對應(yīng)的圓心角的度數(shù)是 度;
(2)把條形統(tǒng)計圖補充完整;
(3)甲,乙兩位同學(xué)去該景區(qū)旅游,用樹狀圖或列表法,求甲,乙兩位同學(xué)在A,B,D三個景點中,同時選擇去同一景點的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC 中,∠BAC=90°,CE 平分∠ACB,點 D 在 CE的延長線上,連接 BD,過B作BF⊥BC交 CD 于點 F,連接 AF,若CF=2BD ,DE:CE=5:8 , BF ,則AF的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個少年在綠茵場上游戲.小紅從點出發(fā)沿線段運動到點,小蘭從點出發(fā),以相同的速度沿逆時針運動一周回到點,兩人的運動路線如圖1所示,其中.兩人同時開始運動,直到都停止運動時游戲結(jié)束,其間他們與點的距離與時間(單位:秒)的對應(yīng)關(guān)系如圖2所示.則下列說法正確的是( )
A.小紅的運動路程比小蘭的長
B.兩人分別在1.09秒和7.49秒的時刻相遇
C.當(dāng)小紅運動到點的時候,小蘭已經(jīng)經(jīng)過了點
D.在4.84秒時,兩人的距離正好等于的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,“線上教學(xué)”為我們提供了復(fù)習(xí)的渠道.學(xué)校隨機抽取部分學(xué)生就“你是否喜歡線上教學(xué)”進行了問卷調(diào)查,并將調(diào)查結(jié)果統(tǒng)計后繪制成如下統(tǒng)計表和統(tǒng)計圖.
調(diào)查結(jié)果統(tǒng)計表
類別 | 非常喜歡 | 喜歡 | 一般 | 不喜歡 |
頻數(shù) | a | 70 | 20 | 10 |
頻率 | 0.5 | b | 0.15 |
調(diào)查結(jié)果扇形統(tǒng)計圖
(1)在統(tǒng)計表中,a= ;b= ;
(2)在扇形統(tǒng)計圖中,對線上教學(xué)感覺“一般”所對應(yīng)的圓心角度數(shù)為 ;
(3)已知全校共有3000名學(xué)生,試估計“喜歡”線上教學(xué)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一邊長為10m的等邊△ABC游樂場,某人從邊AB中點P出發(fā),先由點P沿平行于BC的方向運動到AC邊上的點P1,再由P1沿平行于AB方向運動到BC邊上的點P2,又由點P2沿平行于AC方向運動到AB邊上的點P3,則此人至少要運動_____m,才能回到點P.如果此人從AB邊上任意一點出發(fā),按照上面的規(guī)律運動,則此人至少走_____m,就能回到起點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的圖形,,給出如下定義:為圖形上任意一點,為圖形上任意一點,如果線段的長度有最小值,那么稱這個最小值為圖形,的“近距”,記作;如果線段的長度有最大值,那么稱這個最大值為圖形,的“遠距”,記作.
已知點,.
(1)(點,線段)______,(點,線段)______;
(2)一次函數(shù)的圖象與軸交于點,與軸交于點,若(線段,線段),
①求的值;
②直接寫出(線段,線段)______;
(3)的圓心為,半徑為1.若(線段),請直接寫出(,線段)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)隨機抽取200名學(xué)生寒假期間平均每天體育鍛煉時間進行問卷調(diào)查,并將調(diào)查結(jié)果分為A、B、C、D四個等級.A:1小時以內(nèi);B:1小時~1.5小時;C:1.5小時~2小時;D:2小時以上;根據(jù)調(diào)查結(jié)果繪制了不完整的統(tǒng)計圖(如圖).若用扇形統(tǒng)計圖來描述這200名學(xué)生寒假期間平均每天的體育鍛煉情況,則C等級對應(yīng)的扇形圓心角的度數(shù)為( )
A.36°B.60°C.72°D.108°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com