【題目】某中學(xué)數(shù)學(xué)興趣小組在一次課外學(xué)習(xí)與探究中遇到一些新的數(shù)學(xué)符號,他們將其中某些材料摘錄如下:
對于三個實,數(shù),,,用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù),例如=4,,.請結(jié)合上述材料,解決下列問題:
(1)①_____,
②_____;
(2)若,則的取值范圍為_____;
(3)若,求的值;
(4)如果,求的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個數(shù)中任取一個數(shù)作為a的值,再從余下的四個數(shù)中任取一個數(shù)作為b的值,則點P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩組卡片,它們除標(biāo)號外其他均相同,第一組卡片上分別寫有數(shù)字“1,2,3”,第二組卡片上分別寫有數(shù)字“﹣3,﹣1,1,2”,把卡片背面朝上洗勻,先從第一組卡片中隨機抽出一張,將其標(biāo)記為一個點坐標(biāo)的橫坐標(biāo),再從第二組卡片中隨機抽出一張,將其標(biāo)記為一個點坐標(biāo)的縱坐標(biāo),則組成的這個點在一次函數(shù)y=﹣2x+3上的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在半徑為6的扇形AOB中,,點C是弧AB上的一個動點(不與點、重合),、,垂足分別為D、E.
(1)①當(dāng)時,線段 ;
②當(dāng)的度數(shù)= °時,四邊形成為菱形;
(2)試說明:四邊形的四個頂點在同一個圓上;
(3)如圖②,過點作,垂足為,連接,隨著點的運動,在△中是否存在保持不變的角?如果存在,請指出這個角并求出它的度數(shù);如果不存在,請說明理由;
(4)在(3)條件下,若點從點運動到點,則點的運動路徑長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°.
(1)以點C為圓心,以CB的長為半徑畫弧,交AB于點G,分別以點G,B為圓心,以大于GB的長為半徑畫弧,兩弧交于點K,作射線CK;
(2)以點B為圓心,以適當(dāng)?shù)拈L為半徑畫弧,交BC于點M,交AB的延長線于點N,分別以點M,N為圓心,以大于MN的長為半徑畫弧,兩弧交于點P,作直線BP交AC的延長線于點D,交射線CK于點E;
(3)過點D作DF⊥AB交AB的延長線于點F,連接CF.
根據(jù)以上操作過程及所作圖形,有如下結(jié)論:
①CE=CD;
②BC=BE=BF;
③;
④∠BCF=∠BCE.
所有正確結(jié)論的序號為( )
A.①②③B.①③C.②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點A(0,3m),P(0,2m),Q(0,m)(m≠0).將點A繞點P順時針旋轉(zhuǎn)90°,得到點M,將點O繞點Q順時針旋轉(zhuǎn)90°,得到點N,連接MN,稱線段MN為線段AO的伴隨線段.
(1)如圖1,若m=1,則點M,N的坐標(biāo)分別為 , ;
(2)對于任意的m,求點M,N的坐標(biāo)(用含m的式子表示);
(3)已知點B(,t),C(,t),以線段BC為直徑,在直線BC的上方作半圓,若半圓與線段BC圍成的區(qū)域內(nèi)(包括邊界)至少存在一條線段AO的伴隨線段MN,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦聯(lián)歡會前,班級買了甲、乙、丙三種筆記本作為獎品,共買了本,花了元,其中乙種筆記本數(shù)量是甲種筆記本數(shù)量的倍,已知甲種筆記本單價為元,乙種筆記本單價為元,丙種筆記本單價為元.
求甲、乙、丙三種筆記本各買了多少本?
若購買獎品的費用又增加了元,且購買獎品的總數(shù)量及購買乙種筆記本數(shù)量不變,則最多可以購買甲型筆記本多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,小明進行了如下的尺規(guī)作圖:
①分別以點A、B為圓心,以大于AB的長為半徑作弧,兩弧分別相交于點P、Q;
②作直線PQ分別交邊AB、BC于點E、D.
(1)小明所求作的直線DE是線段AB的 ;
(2)聯(lián)結(jié)AD,AD=7,sin∠DAC=,BC=9,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點,對稱軸與軸交于點,點,點,點是平面內(nèi)一動點,且滿足,是線段的中點,連結(jié).則線段的最大值是( ).
A.3B.C.D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com