【題目】如圖,拋物線軸交于、兩點,對稱軸與軸交于點,點,點,點是平面內(nèi)一動點,且滿足,是線段的中點,連結.則線段的最大值是( ).

A.3B.C.D.5

【答案】C

【解析】

解方程x28x150A3,0),利用拋物線的性質得到C點為AB的中點,再根據(jù)圓周角定理得到點P在以DE為直徑的圓上,圓心Q點的坐標為(4,0),接著計算出AQ5,⊙Q的半徑為2,延長AQ交⊙QF,此時AF的最大值為7,連接AP,利用三角形的中位線性質得到CMAP,從而得到CM的最大值.

解方程x28x150x13,x25,則A30),

∵拋物線的對稱軸與x軸交于點C,

C點為AB的中點,

∵∠DPE90°,

∴點P在以DE為直徑的圓上,圓心Q點的坐標為(4,0),

AQ5,⊙Q的半徑為2

延長AQ交⊙QF,此時AF最大,最大值為257,

連接AP,

M是線段PB的中點,

CM為△ABP為中位線,

CMAP,

CM的最大值為

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學數(shù)學興趣小組在一次課外學習與探究中遇到一些新的數(shù)學符號,他們將其中某些材料摘錄如下:

對于三個實,數(shù),,,用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù),例如=4,.請結合上述材料,解決下列問題:

1)①_____,

_____;

2)若,則的取值范圍為_____;

3)若,求的值;

4)如果,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李老師每天要騎車到離家15千米的單位上班,若將速度提高原來的,則時間可縮短15分鐘.

1)求李老師原來的速度為多少千米/時;

2)李老師按照原來的速度騎車到途中的A地,發(fā)現(xiàn)公文包忘在家里,他立即提速1倍回到家里取公文包(其他時間忽略不計),并且以返回時的速度趕往單位,若李老師到單位的時間不超過平時到校的時間,求A地距家最多多少千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在直角坐標系中,平行四邊形OABC的頂點A,C坐標分別為A(2,0),C(1,2),反比例函數(shù)的圖象經(jīng)過點B (m≠0)

1)求出反比例函數(shù)的解析式

2)將OABC沿著x軸翻折,點C落在點D處,做出點D并判斷點D是否在反比例函數(shù)的圖象上

3)在x軸是否存在一點P使OCP為等腰三角形,若存在,寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有若干間標準房,當標準房的價格為元時,每天入住的國間數(shù)為間,經(jīng)市場調查表明,該賓館每間標準房的價格在元之間(含元,元)浮動時,每天人住的房間數(shù)(間)與每間標準房的價格(元)的數(shù)據(jù)如下表:

(元)

……

190

200

210

220

……

(元)

……

65

60

55

50

……

1)根據(jù)所給數(shù)據(jù)在坐標系中描出相應的點,并畫出圖象.

2)猜想(1)中的圖象是什么函數(shù)的圖象,求關于的函數(shù)表達式,并寫出自變量的取值范圍.

3)設客房的日營業(yè)額為W ().若不考慮其他因素,問賓館標準房的價格定為多少元時,客房的日營業(yè)額最大?最大為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線ymx26mx+9m+1m0).

1)求拋物線的頂點坐標;

2)若拋物線與x軸的兩個交點分別為AB點(點A在點B的左側),且AB4,求m的值.

3)已知四個點C22)、D20)、E5,﹣2)、F5,6),若拋物線與線段CD和線段EF都沒有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,頂點坐標分別為:.線段的端點坐標為

線段先向 平移 個單位,再向 平移_ 個單位與線段重合;

繞點旋轉后得到的使的對應邊為直接寫出點的坐標;

寫出點在旋轉過程中所經(jīng)過的路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我校數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度(圖中線段MN的長).直線MN垂直于地面,垂足為點P,在地面A處測得點M的仰角為60°,點N的仰角為45°,在B處測得點M的仰角為30°AB5米.且AB、P三點在一直線上,請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過外一點引它的兩條切線,切點分別為,,若,則稱的環(huán)繞點.

1)當半徑為1時,

①在,中,的環(huán)繞點是_______________;

②直線軸交于點,軸交于點,若線段上存在的環(huán)繞點,求的取值范圍;

2的半徑為1,圓心為,以為圓心,為半徑的所有圓構成圖形,若在圖形上存在的環(huán)繞點,直接寫出的取值范圍.

查看答案和解析>>

同步練習冊答案