【題目】如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA100米,山坡坡度=12,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置P的鉛直高度PB.(測傾器高度忽略不計,結果保留根號形式)

【答案】OC100米;PB米.

【解析】

在圖中共有三個直角三角形,即RtAOC、RtPCFRtPAB,利用60°的三角函數(shù)值以及坡度,求出OC,再分別表示出CFPF,然后根據兩者之間的關系,列方程求解即可.

解:過點PPFOC,垂足為F

RtOAC中,由∠OAC60°,OA100,得OCOAtanOAC100(米),

由坡度=12,設PBx,則AB2x

PFOB100+2x,CF100x

RtPCF中,∠CPF45°,

PFCF,即100+2x100x

x,即PB米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為更新果樹品種,某果園計劃新購進、兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中種苗的單價為/棵,購買種苗所需費用(元)與購買數(shù)量(棵)之間存在如圖所示的函數(shù)關系.

1)求的函數(shù)關系式;

2)若在購買計劃中,種苗的數(shù)量不超過35棵,但不少于種苗的數(shù)量,請設計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位在疫情期間用3000元購進A、B兩種口罩1100個,購買A種口罩與購買B種口罩的費用相同,且A種口罩的單價是B種口罩單價的1.2倍;

1)求AB兩種口罩的單價各是多少元?

2)若計劃用不超過7000元的資金再次購進A、B兩種口罩共2600個,已知AB兩種口罩的進價不變,求A種口罩最多能購進多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經過點,兩點,與軸交于點,點是拋物線上一個動點,設點的橫坐標為.連接,,

1)求拋物線的函數(shù)表達式;

2的面積何時最大?求出此時點的坐標和最大面積;

3)在(2)的條件下,若點軸上一動點,點是拋物線上一動點,試判斷是否存在這樣的點,使得以點,,,為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線經過原點,交軸正半軸于點,頂點為,對稱軸交軸于點

1)如圖1,求點的坐標;

2)如圖2,點為拋物線在第一象限上一點,連接交對稱軸于點,設點的橫坐標為,的長為,求之間的函數(shù)解析式,不要求寫出自變量的取值范圍;

3)如圖3,在(2)的條件下,點上一點,連接,點上一點,連接,,,若,求點橫坐標的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為,四邊形ABCD為⊙O的內接矩形,AD=6MDC中點,E為⊙O上的一個動點,連結DE,作DFDE交射線EAF,連結MF,則MF的最大值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解青少年形體情況,現(xiàn)隨機抽查了某市若十名初中學生坐必、站姿.走安的好壞情況我們對測評數(shù)據作了適當處理(如果一個學生有一種以上:不良姿勢.以他最突出的一種作記載) ,并將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖.請你根據圖中所給信息解答下列問題:

求這次抽查一共抽查了多少名學生;

請將條形統(tǒng)計圖補充完整;

如果全市有萬名初中生,那么全市初中生中,三姿良好的學生約有多少名

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)y (x>0)的圖象交于點P(n,2),與x軸交于點A(-4,0),與y軸交于點C,PBx軸于點B,點A與點B關于y軸對稱.

(1)求一次函數(shù)、反比例函數(shù)的解析式;

(2)求證:點C為線段AP的中點;

(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形,如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,ABCD的邊ABx軸上,頂點Dy軸的正半軸上,點C在第一象限,將AOD沿y軸翻折,使點A落在x軸上的點E處,點B恰好為OE的中點,DEBC交于點F.若yk≠0)圖象經過點C,且SBEF1,則k的值為________

查看答案和解析>>

同步練習冊答案