【題目】如圖1,已知直線y=kx與拋物線y= 交于點(diǎn)A(3,6).
(1)求直線y=kx的解析式和線段OA的長度;
(2)點(diǎn)P為拋物線第一象限內(nèi)的動點(diǎn),過點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;
(3)如圖2,若點(diǎn)B為拋物線上對稱軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點(diǎn)的個數(shù)分別是1個、2個?
【答案】
(1)
解:把點(diǎn)A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=
(2)
解:方法一:
是一個定值,理由如下:
如答圖1,過點(diǎn)Q作QG⊥y軸于點(diǎn)G,QH⊥x軸于點(diǎn)H.
①當(dāng)QH與QM重合時,顯然QG與QN重合,
此時 =tan∠AOM=2;
②當(dāng)QH與QM不重合時,
∵QN⊥QM,QG⊥QH
不妨設(shè)點(diǎn)H,G分別在x、y軸的正半軸上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…,
∴ =tan∠AOM=2,
當(dāng)點(diǎn)P、Q在拋物線和直線上不同位置時,同理可得 =2
方法二:
過點(diǎn)Q分別作y軸,x軸垂線,垂足分別為G,H,
∵QN⊥QM,∴∠NQH+∠HQM=90°,
∵QG⊥QH,∴∠NQH+∠GQN=90°,
∴∠HQM=∠GQN,
∵∠QGN=∠QHM=90°,
∴△QGN∽△QHM,
∴QM:QN=2:1
(3)
解:方法一:如答圖2,
延長AB交x軸于點(diǎn)F,過點(diǎn)F作FC⊥OA于點(diǎn)C,過點(diǎn)A作AR⊥x軸于點(diǎn)R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC= OA=
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴ ,
∴OF= ,
∴點(diǎn)F( ,0),
設(shè)點(diǎn)B(x,﹣ ),
過點(diǎn)B作BK⊥AR于點(diǎn)K,則△AKB∽△ARF,
∴ ,
即 ,
解得x1=6,x2=3(舍去),
∴點(diǎn)B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5;
(求AB也可采用下面的方法)
設(shè)直線AF為y=kx+b(k≠0)把點(diǎn)A(3,6),點(diǎn)F( ,0)代入得
k=﹣ ,b=10,
∴y=﹣ x+10,
∴ ,
∴ (舍去), ,
∴B(6,2),
∴AB=5
(其它方法求出AB的長酌情給分)
在△ABE與△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.
設(shè)OE=a,則AE=3 ﹣a(0<a<3 ),
由△ABE∽△OED得 ,
∴ = ,
∴m= a(3 ﹣a)=﹣ a2+ a(0<a<3 ),
∴頂點(diǎn)為( , )
如答圖3,
當(dāng)m= 時,OE=a= ,此時E點(diǎn)有1個;
當(dāng)0<m< 時,任取一個m的值都對應(yīng)著兩個a值,此時E點(diǎn)有2個.
∴當(dāng)m= 時,E點(diǎn)只有1個
當(dāng)0<m< 時,E點(diǎn)有2個
方法二:
延長AB交x軸于F,過點(diǎn)F作FC⊥OA于點(diǎn)C.
∵∠BAE=∠AOD,
∴OF=AF,
∵FC⊥OA,
∴C為OA中點(diǎn),
∵O(0,0),A(3,6),
∴C( ,3),
KOA=2,
∵KOA×KPC=﹣1,
∴KPC=﹣ ,
∴l(xiāng)FC:y=﹣ x+ ,
當(dāng)y=0時,x= ,即F( ,0),
∴l(xiāng)AF:y=﹣ x+10,
∴ x1=3(舍),x2=6,
∴B(6,2),AB=5,
∵D(m,0),OD=m,
設(shè)AE=a,OE=3 ﹣a,
∠OED=∠ABE,
∴△ABE∽△OED,
∴ ,
∴ ,
∴a2﹣ a+5m=0,
∵E只有一個,
∴△=45﹣20m=0,
∴m= ,
∵E只有兩個,
∴△=45﹣20m>0,
即0<m< 時,E有兩個
【解析】(1)利用待定系數(shù)法求出直線y=kx的解析式,根據(jù)A點(diǎn)坐標(biāo)用勾股定理求出線段OA的長度;(2)如答圖1,過點(diǎn)Q作QG⊥y軸于點(diǎn)G,QH⊥x軸于點(diǎn)H,構(gòu)造相似三角形△QHM與△QGN,將線段QM與線段QN的長度之比轉(zhuǎn)化為相似三角形的相似比,即 =tan∠AOM=2為定值.需要注意討論點(diǎn)的位置不同時,這個結(jié)論依然成立;(3)由已知條件角的相等關(guān)系∠BAE=∠BED=∠AOD,可以得到△ABE∽△OED.設(shè)OE=a,則由相似邊的比例關(guān)系可以得到m關(guān)于x的表達(dá)式m=﹣ a2+ a(0<a<3 ),這是一個二次函數(shù).借助此二次函數(shù)圖象(如答圖3),可見m在不同取值范圍時,a的取值(即OE的長度,或E點(diǎn)的位置)有1個或2個.這樣就將所求解的問題轉(zhuǎn)化為分析二次函數(shù)的圖象與性質(zhì)問題.另外,在相似三角形△ABE與△OED中,運(yùn)用線段比例關(guān)系之前需要首先求出AB的長度.如答圖2,可以通過構(gòu)造相似三角形,或者利用一次函數(shù)(直線)的性質(zhì)求得AB的長度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P是拋物線:y=x2上的動點(diǎn)(點(diǎn)在第一象限內(nèi)).連接 OP,過點(diǎn)0作OP的垂線交拋物線于另一點(diǎn)Q.連接PQ,交y軸于點(diǎn)M.作PA丄x軸于點(diǎn)A,QB丄x軸于點(diǎn)B.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)如圖1,當(dāng)m= 時,
①求線段OP的長和tan∠POM的值;
②在y軸上找一點(diǎn)C,使△OCQ是以O(shè)Q為腰的等腰三角形,求點(diǎn)C的坐標(biāo);
(2)如圖2,連接AM、BM,分別與OP、OQ相交于點(diǎn)D、E.
①用含m的代數(shù)式表示點(diǎn)Q的坐標(biāo);
②求證:四邊形ODME是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB∥DC,線段AG,BG分別交CD于點(diǎn)E,F(xiàn),DE=CF. 求證:△GAB是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)成為商城人的時尚,義烏市新圖書館的啟用,吸引了大批讀者.有關(guān)部門統(tǒng)計(jì)了2011年10月至2012年3月期間到市圖書館的讀者的職業(yè)分布情況,統(tǒng)計(jì)圖如下:
(1)在統(tǒng)計(jì)的這段時間內(nèi),共有萬人到市圖書館閱讀,其中商人所占百分比是 ,
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑);
(3)若今年4月到市圖書館的讀者共28000名,估計(jì)其中約有多少名職工?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB內(nèi)部有順次的四條射線:OE、OC、OD、OF、OE平分∠AOC,OF平分∠DOB.
(1)若∠AOB=160°,∠COD=40°,求∠EOF的度數(shù);
(2)若∠AOB=a,∠COD=β,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠A0B=420,點(diǎn)P為∠A0B內(nèi)一點(diǎn),分別作出P點(diǎn)關(guān)于OA、OB的對稱點(diǎn)P1,P2,連接P1P2交OA于M,交OB于N,P1P2=15,則△PMN的周長為________,∠MPN ________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,過點(diǎn)B作BD⊥AC于點(diǎn)D,過D作DE∥BC,且DE=CD,連接CE,
(1)求證:△CDE為等邊三角形;
(2)請連接BE,若AB=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰直角三角形ABC繞點(diǎn)A逆時針旋轉(zhuǎn)15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+ x+2與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.點(diǎn)P是線段BC上的動點(diǎn)(點(diǎn)P不與B,C重合),連接并延長AP交拋物線于另一點(diǎn)Q,設(shè)點(diǎn)Q的橫坐標(biāo)為x.
(1)①寫出點(diǎn)A,B,C的坐標(biāo):A(),B(),C();
②求證:△ABC是直角三角形;
(2)記△BCQ的面積為S,求S關(guān)于x的函數(shù)表達(dá)式;
(3)在點(diǎn)P的運(yùn)動過程中, 是否存在最大值?若存在,求出 的最大值及點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com