【題目】如圖,某飛機(jī)于空中探測某座山的高度,在點(diǎn)A處飛機(jī)的飛行高度是AF=3700米,從飛機(jī)上觀測山頂目標(biāo)C的俯角是45°,飛機(jī)繼續(xù)以相同的高度飛行300米到B處,此時(shí)觀測目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).

【答案】1900米

【解析】試題分析:設(shè)EC=x,則在RT△BCE中,用x表示出BE的長,在Rt△ACE中,再用x表示出AE的長,根據(jù)AB+BE=AE,列出方程,解方程即可得出答案.

試題解析:設(shè)EC=x,

RtBCE中,tanEBC=,

BE= ,

RtACE中,tanEAC=,

AE= ,

∵AB+BE=AE,

300+ =x

解得:x=1800,

即可得山高CD=DE-EC=3700-1800=1900(米).

答:這座山的高度是1900米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點(diǎn)A2,0),B0,4),∠AOB的平分線交ABC,一動(dòng)點(diǎn)PO點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度,沿y軸向點(diǎn)B作勻速運(yùn)動(dòng),過點(diǎn)P且平行于AB的直線交x軸于Q,作P、Q關(guān)于直線OC的對稱點(diǎn)M、N.設(shè)P運(yùn)動(dòng)的時(shí)間為t0t2)秒.

1)求C點(diǎn)的坐標(biāo),并直接寫出點(diǎn)M、N的坐標(biāo)(用含t的代數(shù)式表示);

2)設(shè)△MNC△OAB重疊部分的面積為S

試求S關(guān)于t的函數(shù)關(guān)系式;

在圖2的直角坐標(biāo)系中,畫出S關(guān)于t的函數(shù)圖象,并回答:S是否有最大值?若有,寫出S的最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是邊BC上一點(diǎn),且BECE13,DEAC于點(diǎn)F,若DE10,則CF等于( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn) 50 臺(tái)機(jī)器,現(xiàn)在生產(chǎn) 600 臺(tái)機(jī)器所需時(shí)間與原計(jì)劃生產(chǎn) 450 臺(tái)機(jī)器所需時(shí)間相同.

(1)現(xiàn)在平均每天生產(chǎn)多少臺(tái)機(jī)器;

(2)生產(chǎn) 3000 臺(tái)機(jī)器,現(xiàn)在比原計(jì)劃提前幾天完成.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(3,y1),B(2,y2)均在拋物線yax2+bx+c上,點(diǎn)P(m,n)是該拋物線的頂點(diǎn),若y1y2n,則m的取值范圍是(  )

A.3m2B.m-C.m>﹣D.m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將面積為的矩形ABCD的四邊BA、CB、DC、AD分別延長至EF、G、H,使得AE=CG,BF=BC, DH=AD,連接EF, FGGH,HE,AF,CH.若四邊形EFGH為菱形,,則菱形EFGH的面積是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校圖書館為了滿足同學(xué)們閱讀課外書的需求,計(jì)劃購進(jìn)甲、乙兩種圖書共100套,其中甲種圖書每套120元,乙種圖書每套80元.設(shè)購買甲種圖書的數(shù)量套.

(1)按計(jì)劃用11000元購進(jìn)甲、乙兩種圖書時(shí),問購進(jìn)這甲、乙兩種圖書各多少套?

(2)若購買甲種圖書的數(shù)量要不少于乙種圖書的數(shù)量的,購買兩種圖書的總費(fèi)用為元,求出最少總費(fèi)用.

(3)圖書館在不增加購買數(shù)量的情況下,增加購買丙種圖書,要求甲種圖書與丙種圖書的購買費(fèi)用相同.丙種圖書每套100元,總費(fèi)用比(2)中最少總費(fèi)用多出1240元,請直接寫出購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、BO上的兩個(gè)定點(diǎn),PO上的動(dòng)點(diǎn)(P不與AB重合)、我們稱∠APBO上關(guān)于點(diǎn)A、B的滑動(dòng)角.

1)已知∠APBO上關(guān)于點(diǎn)A、B的滑動(dòng)角,

ABO的直徑,則∠APB   °;

O的半徑是1AB,求∠APB的度數(shù);

2)已知O2O1外一點(diǎn),以O2為圓心作一個(gè)圓與O1相交于A、B兩點(diǎn),∠APBO1上關(guān)于點(diǎn)A、B的滑動(dòng)角,直線PAPB分別交O2M、N(點(diǎn)M與點(diǎn)A、點(diǎn)N與點(diǎn)B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)某海域有A,B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(結(jié)果保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊答案