【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于、兩點(diǎn),以為邊在第一象限作正方形沿軸負(fù)方向平移個單位長度后,點(diǎn)恰好落在雙曲線上,則的值是__________.
【答案】
【解析】
作CE⊥y軸于點(diǎn)E,交雙曲線于點(diǎn)G.作DF⊥x軸于點(diǎn)F,易證△OAB≌△FDA≌△BEC,求得A、B的坐標(biāo),根據(jù)全等三角形的性質(zhì)可以求得C、D的坐標(biāo),從而利用待定系數(shù)法求得反比例函數(shù)的解析式,進(jìn)而求得G的坐標(biāo),則a的值即可求解.
作CE⊥y軸于點(diǎn)E,交雙曲線于點(diǎn)G.作DF⊥x軸于點(diǎn)F.
在y=3x+3中,令x=0,解得:y=3,即B的坐標(biāo)是(0,3).
令y=0,解得:x=1,即A的坐標(biāo)是(1,0).
則OB=3,OA=1.
∵∠BAD=90°,
∴∠BAO+∠DAF=90°,
又∵直角△ABO中,∠BAO+∠OBA=90°,
∴∠DAF=∠OBA,
在△OAB和△FDA中,
∴△OAB≌△FDA(AAS),
同理,△OAB≌△FDA≌△BEC,
∴AF=OB=EC=3,DF=OA=BE=1,
故D的坐標(biāo)是(4,1),C的坐標(biāo)是(3,4).代入y=得:k=4,則函數(shù)的解析式是:y=.
∴OE=4,
則C的縱坐標(biāo)是4,把y=4代入y=得:x=1.即G的坐標(biāo)是(1,4),
∴CG=2.
故答案為:2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣2),點(diǎn)A的坐標(biāo)是(2,0),P為拋物線上的一個動點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)E,拋物線的對稱軸是直線x=﹣1.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在第二象限內(nèi),且PE=OD,求△PBE的面積.
(3)在(2)的條件下,若M為直線BC上一點(diǎn),在x軸的上方,是否存在點(diǎn)M,使△BDM是以BD為腰的等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是“明清影視城”的一扇圓弧形門,小紅到影視城游玩,她了解到這扇門的相關(guān)數(shù)據(jù):這扇圓弧形門所在的圓與水平地面是相切的,AB=CD=0.25m,BD=1.5m,且AB、CD與水平地面都是垂直的.根據(jù)以上數(shù)據(jù),請你幫小紅計算出這扇圓弧形門的最高點(diǎn)離地面的距離是( )
A.2mB.2.5mC.2.4mD.2.1m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,頂點(diǎn)A、B在x軸上,AB=5,點(diǎn)C在第一象限,且菱形ABCD的面積為20, A坐標(biāo)為(-2,0),則頂點(diǎn)C的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過點(diǎn)A(4,1)的直線與反比例函數(shù)y=的圖象交于點(diǎn)A、C,AB⊥y軸,垂足為B,連接BC.
(1)求反比例函數(shù)的表達(dá)式;
(2)若△ABC的面積為6,求直線AC的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)P在雙曲線位于第一象限的圖象上,若∠PAC=90°,則點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,-3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點(diǎn)D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)求直線BC的函數(shù)表達(dá)式;
(3)點(diǎn)E為y軸上一動點(diǎn),CE的垂直平分線交CE于點(diǎn)F,交拋物線于P、Q兩點(diǎn),且點(diǎn)P在第三象限.
①當(dāng)線段PQ=AB時,求tan∠CED的值;
②當(dāng)以點(diǎn)C、D、E為頂點(diǎn)的三角形是直角三角形時,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點(diǎn)B的坐標(biāo)為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE=DE.
①求點(diǎn)P的坐標(biāo);
②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線的頂點(diǎn)坐標(biāo)為 ,伴隨直線為 ,拋物線與其伴隨直線的交點(diǎn)坐標(biāo)為 和 ;
(2)如圖,頂點(diǎn)在第一象限的拋物線與其伴隨直線相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸交于點(diǎn)C,D.
①若∠CAB=90°,求m的值;
②如果點(diǎn)P(x,y)是直線BC上方拋物線上的一個動點(diǎn),△PBC的面積記為S,當(dāng)S取得最大值時,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com