【題目】經(jīng)過點(diǎn)A(4,1)的直線與反比例函數(shù)y=的圖象交于點(diǎn)A、C,AB⊥y軸,垂足為B,連接BC.
(1)求反比例函數(shù)的表達(dá)式;
(2)若△ABC的面積為6,求直線AC的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)P在雙曲線位于第一象限的圖象上,若∠PAC=90°,則點(diǎn)P的坐標(biāo)是 .
【答案】(1)反比例函數(shù)的表達(dá)式為y=(2)直線AC的函數(shù)表達(dá)式為y=x﹣1;(3)(,8).
【解析】
(1)將點(diǎn)A坐標(biāo)代入反比例函數(shù)表達(dá)式中,即可得出結(jié)論;
(2)先求出AB,設(shè)出點(diǎn)C的縱坐標(biāo),利用△ABC的面積為6,求出點(diǎn)C縱坐標(biāo),再代入反比例函數(shù)表達(dá)式中,求出點(diǎn)C坐標(biāo),最后用待定系數(shù)法求出直線AC的解析式;
(3)先求出直線AP的解析式,再和反比例函數(shù)解析式聯(lián)立求解即可得出結(jié)論.
解:(1)∵點(diǎn)A(4,1)在反比例函數(shù)y= 的圖象上,
∴k=4×1=4,
∴反比例函數(shù)的表達(dá)式為y=;
(2)設(shè)點(diǎn)C的縱坐標(biāo)為m,
∵AB⊥y軸,A(4,1),
∴AB=4,
∵△ABC的面積為6,
∴AB×(1﹣m)=6,
∴m=﹣2,
由(1)知,反比例函數(shù)的表達(dá)式為y=,
∴點(diǎn)C的縱坐標(biāo)為:﹣2,
∴點(diǎn)C(﹣2,﹣2),
設(shè)直線AC的解析式為y=k'x+b,
將點(diǎn)A(4,1),C(﹣2,﹣2)代入y=k'x+b中, ,
∴ ,
∴直線AC的函數(shù)表達(dá)式為y=x﹣1;
(3)由(2)知直線AC的函數(shù)表達(dá)式為y=x﹣1,
∵∠PAC=90°,
∴AC⊥AP,
∴設(shè)直線AP的解析式為y=﹣2x+b',
將A(4,1)代入y=﹣2x+b'中,﹣8+b'=1,
∴b'=9,
∴直線AP的解析式為y=﹣2x+9①,
由(1)知,反比例函數(shù)的表達(dá)式為y=②,
聯(lián)立①②解得, (舍)或 ,
∴點(diǎn)P的坐標(biāo)為(,8),
故答案為:(,8).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=ax2+bx+c(a≠0)的圖象于x軸的交點(diǎn)坐標(biāo)分別為(x1,0),(x2,0),且x1<x2,圖象上有一點(diǎn)M(x0,y0)在x軸下方,對(duì)于以下說法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正確的是( 。
A.①③④B.①②④C.①②③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店A類筆的標(biāo)價(jià)是B類筆標(biāo)價(jià)的1.2倍,某顧客用240元買筆,能單獨(dú)購(gòu)買A筆的數(shù)量恰好比單獨(dú)購(gòu)買B類筆的數(shù)量少4支.
(1)求A,B兩類筆的標(biāo)價(jià);
(2)若A類筆的進(jìn)價(jià)為8元/支,B類筆的進(jìn)價(jià)為7元/支.文具店老板準(zhǔn)備用不超過760元購(gòu)進(jìn)兩類筆共100支,應(yīng)如何進(jìn)貨才能獲得最大利潤(rùn)?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2011年高中招生考試,某中學(xué)對(duì)全校九年級(jí)學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本進(jìn)行,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給信息,下列問題:
(1)請(qǐng)將表示成績(jī)類別為“中”的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,表示成績(jī)類別為“優(yōu)”的扇形所對(duì)應(yīng)的圓心角是 72 度;
(3)學(xué)校九年級(jí)共有1000人參加了這次數(shù)學(xué)考試,估算該校九年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市九年級(jí)學(xué)生升學(xué)考試體育成績(jī),現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)進(jìn)行分段(:40分;:39-35分;:34-30分;:29-20分;:19-0分) 統(tǒng)計(jì)如右表。根據(jù)上面提供的信息,回答下列問題:
(1)在統(tǒng)計(jì)表中,的值為 ,的值為 ;
(2)甲同學(xué)說:“我的體育成績(jī)是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù)”.請(qǐng)問:甲同學(xué)的體育成績(jī)應(yīng)在 分?jǐn)?shù)段內(nèi)(填相應(yīng)分?jǐn)?shù)段的字母).
(3)若把成績(jī)?cè)?/span>分以上(含分)定為優(yōu)秀,則我市今年8000名九年級(jí)學(xué)生中體育成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)約有 .名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于、兩點(diǎn),以為邊在第一象限作正方形沿軸負(fù)方向平移個(gè)單位長(zhǎng)度后,點(diǎn)恰好落在雙曲線上,則的值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CE是□ABCD的邊AB的垂直平分線,垂足為點(diǎn)O,CE與DA的延長(zhǎng)線交于點(diǎn)E、連接AC,BE,DO,DO與AC交于點(diǎn)F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四邊形AFOE:S△COD=2:3.其中正確的結(jié)論有( 。﹤(gè).
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,現(xiàn)有下列結(jié)論:①;②;③;④.則其中結(jié)論正確的是( )
A. ①③ B. ③④ C. ②③ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA=AB,∠OAB=90°,反比例函數(shù)y=(x>0)的圖象經(jīng)過A,B兩點(diǎn).若點(diǎn)A的坐標(biāo)為(n,1),則 k的值為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com