【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
【答案】(1)見(jiàn)解析;(2)(3π﹣)cm2
【解析】
(1)由等腰三角形的性質(zhì)證出∠ODB=∠C.得出OD∥AC.由已知條件證出DE⊥OD,即可得出結(jié)論;
(2)由垂徑定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面積,再求出扇形BOD的面積,即可得出結(jié)果.
(1)連接OD,如圖1所示:
∵OD=OB,
∴∠B=∠ODB.
∵AB=AC,
∴∠B=∠C.
∴∠ODB=∠C.
∴OD∥AC.
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切線.
(2)過(guò)O作OF⊥BD于F,如圖2所示:
∵∠C=30°,AB=AC,OB=OD,
∴∠OBD=∠ODB=∠C=30°,
∴∠BOD=120°,
在Rt△DFO中,∠FDO=30°,
∴OF=OD=cm,
∴DF==cm,
∴BD=2DF=3cm,
∴S△BOD=×BD×OF=×3×=cm2,
S扇形BOD==3πcm2,
∴S陰=S扇形BOD﹣S△BOD==(3π﹣)cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓AB后方有一斜坡,斜坡與教學(xué)樓剖面在同一平面內(nèi),已知斜坡CD的長(zhǎng)為6m,坡度i=1:0.75,教學(xué)樓底部到斜坡底部的水平距離AC=8m,在教學(xué)樓頂部B點(diǎn)測(cè)得斜坡頂部D點(diǎn)的俯角為46°,則教學(xué)樓的高度約為( )
(參考數(shù)據(jù):sin46°≈0.72,cos46°≈0.69,tan46°≈1.04).
A.12.1mB.13.3m
C.16.9mD.18.1m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情無(wú)情人有情,愛(ài)心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,某班學(xué)生積極參加獻(xiàn)愛(ài)心活動(dòng),該班50名學(xué)生的捐款統(tǒng)計(jì)情況如下表:
金額/元 | 5 | 10 | 20 | 50 | 100 |
人數(shù) | 6 | 17 | 14 | 8 | 5 |
則他們捐款金額的眾數(shù)和中位數(shù)分別是( )
A.100,10B.10,20C.17,10D.17,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖所示,某地區(qū)對(duì)某種藥品的需求量y1(萬(wàn)件),供應(yīng)量y2(萬(wàn)件)與價(jià)格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x + 70,y2=2x-38,需求量為0時(shí),即停止供應(yīng).當(dāng)y1=y2時(shí),該藥品的價(jià)格稱為穩(wěn)定價(jià)格,需求量稱為穩(wěn)定需求量.
(1)求該藥品的穩(wěn)定價(jià)格與穩(wěn)定需求量.
(2)價(jià)格在什么范圍內(nèi),該藥品的需求量低于供應(yīng)量?
(3)由于該地區(qū)突發(fā)疫情,政府部門決定對(duì)藥品供應(yīng)方提供價(jià)格補(bǔ)貼來(lái)提高供貨價(jià)格,以利提高供應(yīng)量.根據(jù)調(diào)查統(tǒng)計(jì),需將穩(wěn)定需求量增加6萬(wàn)件,政府應(yīng)對(duì)每件藥品提供多少元補(bǔ)貼,才能使供應(yīng)量等于需求量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某漁船在海面上朝正西方向以20海里/時(shí)勻速航行,在A處觀測(cè)到燈塔C在北偏西60°方向上,航行1小時(shí)到達(dá)B處,此時(shí)觀察到燈塔C在北偏西30°方向上,若該船繼續(xù)向西航行至離燈塔距離最近的位置,求此時(shí)漁船到燈塔的距離(結(jié)果精確到1海里,參考數(shù)據(jù): ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】青海新聞網(wǎng)訊:2016年2月21日,西寧市首條綠道免費(fèi)公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬(wàn)元,建成40個(gè)公共自行車站點(diǎn)、配置720輛公共自行車.今后將逐年增加投資,用于建設(shè)新站點(diǎn)、配置公共自行車.預(yù)計(jì)2018年將投資340.5萬(wàn)元,新建120個(gè)公共自行車站點(diǎn)、配置2205輛公共自行車.
(1)請(qǐng)問(wèn)每個(gè)站點(diǎn)的造價(jià)和公共自行車的單價(jià)分別是多少萬(wàn)元?
(2)請(qǐng)你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是直經(jīng),D是的中點(diǎn),DE⊥AC交AC的延長(zhǎng)線于E,⊙O的切線BF交AD的延長(zhǎng)線于點(diǎn)F.
(1)求證:DE是⊙O的切線.
(2)試探究AE,AD,AB三者之間的等量關(guān)系.
(3)若DE=3,⊙O的半徑為5,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是半徑為的上的定點(diǎn),動(dòng)點(diǎn)從出發(fā),以的速度沿圓周逆時(shí)針運(yùn)動(dòng),當(dāng)點(diǎn)回到地立即停止運(yùn)動(dòng).
(1)如果,求點(diǎn)運(yùn)動(dòng)的時(shí)間;
(2)如果點(diǎn)是延長(zhǎng)線上的一點(diǎn),,那么當(dāng)點(diǎn)運(yùn)動(dòng)的時(shí)間為時(shí),判斷直線與的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù) (a 0) 與 x 軸交于 A、C 兩點(diǎn),與 y 軸交于點(diǎn) B,P 為 拋物線的頂點(diǎn),連接 AB,已知 OA:OC=1:3.
(1)求 A、C 兩點(diǎn)坐標(biāo);
(2)過(guò)點(diǎn) B 作 BD∥x 軸交拋物線于 D,過(guò)點(diǎn) P 作 PE∥AB 交 x 軸于 E,連接 DE,
①求 E 坐標(biāo);
②若 tan∠BPM=,求拋物線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com