【題目】已知點是線段上與點不重合的一點,且繞點逆時針旋轉(zhuǎn)角得到繞點順時針旋轉(zhuǎn)角得到,連接


1)如圖1,當(dāng)時,求的度數(shù);

2)如圖2,當(dāng)點的延長線上時,求證:

3)如圖3,過的中點,過的中點 交于點,連接,若,求的長度.

【答案】1;(2)證明見解析;(3

【解析】

1)利用旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形得出∠APP1=BPP2=45°,進而得出答案;
2)根據(jù)題意得出△PAP1和△PBP2均為頂角為α的等腰三角形,進而得出∠P1PP2=PAP2=α,求出△P2P1P∽△P2PA

3)首先連結(jié)QB,作,利用HL得出,利用角度的計算得出,利用勾股定理求得PQ的長,再證明,求得PM的長,再利用勾股定理求出即可.

1)解:由旋轉(zhuǎn)的性質(zhì)得:AP=AP1,BP=BP2
∵α=90°,
∴△PAP1和△PBP2均為等腰直角三角形,
∴∠APP1=BPP2=45°,
∴∠P1PP2=180°-APP1-BPP2=90°;

2)證明:由旋轉(zhuǎn)的性質(zhì)可知△PAP1和△PBP2均為頂角為α的等腰三角形,

∴∠APP1=BPP2=90°,

∴∠P1PP2=180°-(∠APP1+BPP2=180°-2(90°)=,

在△P2P1P和△P2PA中,∠P1PP2=PAP2=α,
又∵∠PP2P1=AP2P,
∴△P2P1P∽△P2PA

,

;

3)證明:如圖,連接QB,并過A,垂足為M,

,

1,2分別為PB,P2B的中垂線,,

QP=QBPE=BE=BF=,

又∵BQ=BQ,,

,

,

,

,

,

中,

AP=6,QE=1

,,

中,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的定點P和圖形F,給出如下定義:若在圖形F上存在一點N,使得點Q,點P關(guān)于直線ON對稱,則稱點Q是點P關(guān)于圖形F的定向?qū)ΨQ點.

1)如圖,,,

P關(guān)于點B的定向?qū)ΨQ點的坐標(biāo)是 ;

在點,中,______是點P關(guān)于線段AB的定向?qū)ΨQ點.

2)直線分別與x軸,y軸交于點GH,M是以點為圓心,為半徑的圓.

當(dāng)時,若M上存在點K,使得它關(guān)于線段GH的定向?qū)ΨQ點在線段GH上,求的取值范圍;

對于,當(dāng)時,若線段GH上存在點J,使得它關(guān)于M的定向?qū)ΨQ點在M上,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級隨機抽取了一部分學(xué)生的期末數(shù)學(xué)成績?yōu)闃颖荆譃?/span>)、)、))四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖表,請你根據(jù)統(tǒng)計圖解答以下問題:

其中組的期末數(shù)學(xué)成績?nèi)缦?/span>

1)請補全條形統(tǒng)計圖;

2)這部分學(xué)生的期末數(shù)學(xué)成績的中位數(shù)是 ,組的期末數(shù)學(xué)成績的眾數(shù)是 ;

3)這個學(xué)校九年級共有學(xué)生人,若分數(shù)為()以上為優(yōu)秀,請估計這次九年級學(xué)生期末數(shù)學(xué)考試成績?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為5的菱形ABCD中,對角線AC長為6,點E在對角線BD上且tanEAC=,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形中,的中點,過點的垂線,垂足分別為點和點,四邊形沿著方向以每秒個單位的速度勻速運動,點與點重合時停止運動,設(shè)運動時間為,運動過程中四邊形的重疊部分面積為.關(guān)于的函數(shù)圖象大致為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)

借助圖形的直觀性,我們可以直接得到一些有規(guī)律的算式的結(jié)果,比如:由圖①,通過對小黑點的計數(shù),我們可以得到1+2+3+…+nnn+1);由圖②,通過對小圓圈的計數(shù),我們可以得到1+3+5+…+2n1)=n2

那么13+23+33+…+n3結(jié)果等于多少呢?

如圖③,AB是正方形ABCD的一邊,BB′n,B′B″n1B″B′′′n2,……,顯然AB1+2+3+…+n nn+1),分別以AB′、AB″、AB′′′為邊作正方形,將正方形ABCD分割成塊,面積分別記為Sn、Sn1、Sn2、S1

(規(guī)律探究)

結(jié)合圖形,可以得到Sn2BB′×BCBB′2   ,

同理有Sn1   ,Sn2   ,S113

所以13+23+33+…+n3S四邊形ABCD   

(解決問題)

根據(jù)以上發(fā)現(xiàn),計算的結(jié)果為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費悄況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖表.

請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:

組別

家庭年文化教育消費金額x(元)

戶數(shù)

A

x≤5000

36

B

5000<x≤10000

m

C

10000<x≤15000

27

D

15000<x≤20000

15

E

x>20000

30

(1)本次被調(diào)査的家庭有__________戶,表中 m=__________;

(2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在__________組.扇形統(tǒng)計圖中,D組所在扇形的圓心角是__________度;

(3)這個社區(qū)有2500戶家庭,請你估計家庭年文化教育消費10000元以上的家庭有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、點D為⊙O上兩點,線段BC切⊙O于點B,點DBC的垂直平分線上,CDOA,sinBCD=OA=2BD,若BC=,則⊙O的半徑為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為提高學(xué)生體考成績,對全校300名九年級學(xué)生進行一分種跳繩訓(xùn)練.為了解學(xué)生訓(xùn)練效果,學(xué)校體育組在九年級上學(xué)期開學(xué)初和學(xué)期末分別對九年級學(xué)生進行一分種跳繩測試,學(xué)生成績均為整數(shù),滿分20分,大于18分為優(yōu)秀.現(xiàn)隨機抽取了同一部分學(xué)生的兩次成績進行整理、描述和分析.(成績得分用x表示,共分成五組:Ax13B.13x15,C.15x17,D.17x19,E.19x20

開學(xué)初抽取學(xué)生的成績在D組中的數(shù)據(jù)是:1717,17,17,17,1818

學(xué)期末抽取學(xué)生成績統(tǒng)計表

學(xué)生成績

A

B

C

D

E

人數(shù)

0

1

4

5

a

分析數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

開學(xué)初抽取學(xué)生成績

16

b

17

學(xué)期末抽取學(xué)生成績

18

18.5

19

根據(jù)以上信息,解答下列問題:

1)直接寫出圖表中a、b的值,并補全條形統(tǒng)計圖;

2)假設(shè)該校九年級學(xué)生都參加了兩次測試,估計該校學(xué)期末成績優(yōu)秀的學(xué)生人數(shù)比開學(xué)初成績優(yōu)秀的學(xué)生人數(shù)增加了多少?

3)小莉開學(xué)初測試成績16分,學(xué)期末測試成績19分,根據(jù)抽查的相關(guān)數(shù)據(jù),請選擇一個合適的統(tǒng)計量評價小莉的訓(xùn)練效果.

查看答案和解析>>

同步練習(xí)冊答案