如圖,△ABC與△A′B′C′是位似圖形,且頂點(diǎn)都在格點(diǎn)上,每個(gè)小正方形的邊長(zhǎng)都為1.

(1)在圖上標(biāo)出位似中心D的位置,并寫出該位似中心D的坐標(biāo)是               ;
(2)求△ABC與△A′B′C′的面積比.

(1)圖形見(jiàn)解析,;(2).

解析試題解析:⑴如圖:;

⑵∵
.
考點(diǎn):位似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△ABC中,AB=AC,作以AB為直徑的⊙O與邊BC交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F.
(1)求證:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知AD⊥BC,BE=CE,∠ABC=2∠C,BF為∠B的平分線.求證:AB=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動(dòng)點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A?B?C?D勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同速度在x軸正半軸上運(yùn)動(dòng),當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動(dòng)時(shí),點(diǎn)Q的橫坐標(biāo)x(長(zhǎng)度單位)關(guān)于運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖②所示,請(qǐng)寫出點(diǎn)Q開(kāi)始運(yùn)動(dòng)時(shí)的坐標(biāo)及點(diǎn)P運(yùn)動(dòng)速度;
(2)求正方形邊長(zhǎng)及頂點(diǎn)C的坐標(biāo);
(3)如果點(diǎn)P、Q保持原速度不變,當(dāng)點(diǎn)P沿A?B?C?D勻速運(yùn)動(dòng)時(shí),OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在△中,,平分∠,.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

探究一:如圖1,已知正方形ABCD,E、F分別是BC、AB上的兩點(diǎn),且AE⊥DF.小明經(jīng)探究,發(fā)現(xiàn)AE=DF.請(qǐng)你幫他寫出證明過(guò)程.

探究二:如圖2,在矩形ABCD中,AB=3,BC=4,E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE⊥FH.小明發(fā)現(xiàn),GE與FH并不相等,請(qǐng)你幫他求出的值.

探究三:小明思考這樣一個(gè)問(wèn)題:如圖3,在正方形ABCD中,若E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE=FH,試問(wèn):GE⊥FH是否成立?若一定成立,請(qǐng)給予證明;若不一定成立,請(qǐng)畫圖并作出說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

提出問(wèn)題:如圖①,在四邊形ABCD中,點(diǎn)E、F是AD的n等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的n等分點(diǎn)中最中間2個(gè),(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
                                         
探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點(diǎn)E、F是AD的3等分點(diǎn),點(diǎn)G、H是BC的3等分點(diǎn),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
如圖③,連接EH、BE、DH,

因?yàn)椤鱁GH與△EBH高相等,底的比是1:2,
所以SEGH=SEBH
因?yàn)椤鱁FH與△DEH高相等,底的比是1:2,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因?yàn)椤鱀BE與△ABD高相等,底的比是2:3,
所以SDBE=SABD
因?yàn)椤鰾DH與△BCD高相等,底的比是2:3,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD =(SABD+SBCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點(diǎn)E、F是AD的5等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的5等分點(diǎn)中最中間2個(gè),連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢                       
驗(yàn)證你的猜想:

(2)問(wèn)題解決:如圖①,在四邊形ABCD中,點(diǎn)E、F是AD的n等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的n等分點(diǎn)中最中間2個(gè),連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關(guān)系為:                            (不必寫出求解過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動(dòng)點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A?B?C?D勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同速度在x軸正半軸上運(yùn)動(dòng),當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動(dòng)時(shí),點(diǎn)Q的橫坐標(biāo)x(長(zhǎng)度單位)關(guān)于運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖②所示,請(qǐng)寫出點(diǎn)Q開(kāi)始運(yùn)動(dòng)時(shí)的坐標(biāo)及點(diǎn)P運(yùn)動(dòng)速度;
(2)求正方形邊長(zhǎng)及頂點(diǎn)C的坐標(biāo);
(3)如果點(diǎn)P、Q保持原速度不變,當(dāng)點(diǎn)P沿A?B?C?D勻速運(yùn)動(dòng)時(shí),OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上).

(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為_________;
②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為_________;
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案